Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses

Abstract

Optimization of oncolytic viruses for therapeutic applications requires the strategic removal or mutagenesis of virulence genes alongside the insertion of transgenes that enhance viral replication, spread and immunogenicity. However, the complexity of many viral genomes and the labour-intensive nature of methods for the generation and isolation of recombinant viruses have hindered the development of therapeutic oncolytic viruses. Here we report an iterative strategy that exploits the preferential susceptibility of viruses to certain antibiotics to accelerate the engineering of the genomes of oncolytic viruses for the insertion of immunomodulatory cytokine transgenes, and the identification of dispensable genes with regard to replication of the recombinant oncolytic viruses in tumour cells. We applied the strategy by leveraging insertional mutagenesis via the Sleeping Beauty transposon system, combined with long-read nanopore sequencing, to generate libraries of herpes simplex virus type 1 and vaccinia virus, identifying stable transgene insertion sites and gene deletions that enhance the safety and efficacy of the viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using antibiotics to inhibit viral gene expression and replication.
Fig. 2: Exploring novel intergenic insertion sites and multi-transposon integration in VV using an SB transposon and antibiotic selection method.
Fig. 3: Identification and evaluation of novel HSV-1 variants with multiple gene deletions using antibiotic-based transposon mutagenesis.
Fig. 4: Rapid engineering of recombinant DNA viruses using antibiotic selection.
Fig. 5: Targeted generation and in vivo screening of a diverse library of VV and HSV-1 viruses expressing cytokines.
Fig. 6: Sequential therapy with IL-12-expressing viruses.

Similar content being viewed by others

Data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed long-read sequencing datasets generated during the study are too large to be publicly shared, but are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lemos de Matos, A., Franco, L. S. & McFadden, G. Oncolytic viruses and the immune system: the dynamic duo. Mol. Ther. Methods Clin. Dev. 17, 349–358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu, L., Sun, H., Lemoine, N. R., Xuan, Y. & Wang, P. Oncolytic vaccinia virus and cancer immunotherapy. Front. Immunol. 14, 1324744 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Pelin, A., Boulton, S., Tamming, L. A., Bell, J. C. & Singaravelu, R. Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin. Biol. Ther. 20, 1083–1097 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. De Graaf, J. F., de Vor, L., Fouchier, R. A. M. & van den Hoogen, B. G. Armed oncolytic viruses: a kick-start for anti-tumor immunity. Cytokine Growth Factor Rev. 41, 28–39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lin, D., Shen, Y. & Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct. Target. Ther. 8, 156 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Parato, K. A., Lichty, B. D. & Bell, J. C. Diplomatic immunity: turning a foe into an ally. Curr. Opin. Mol. Ther. 11, 13–21 (2009).

    CAS  PubMed  Google Scholar 

  8. Roizman, B. & Jenkins, F. J. Genetic engineering of novel genomes of large DNA viruses. Science 229, 1208–1214 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Greseth, M. D. & Traktman, P. The life cycle of the vaccinia virus genome. Annu. Rev. Virol. 9, 239–259 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Peters, C. & Rabkin, S. D. Designing herpes viruses as oncolytics. Mol. Ther. Oncolytics 2, 15010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blasco, R. & Moss, B. Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158, 157–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Gowripalan, A., Smith, S., Stefanovic, T. & Tscharke, D. C. Rapid poxvirus engineering using CRISPR/Cas9 as a selection tool. Commun. Biol. 3, 643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Velusamy, T., Gowripalan, A. & Tscharke, D. C. CRISPR/Cas9-based genome editing of HSV. Methods Mol. Biol. 2060, 169–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Whelan, J. T. et al. CRISPR-mediated rapid arming of poxvirus vectors enables facile generation of the novel immunotherapeutic STINGPOX. Front. Immunol. 13, 1050250 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liao, Y., Bajwa, K., Reddy, S. M. & Lupiani, B. Methods for the manipulation of herpesvirus genome and the application to Marek’s disease virus research. Microorganisms 9, 1260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao, X. D. & Evans, D. H. Effects of DNA structure and homology length on vaccinia virus recombination. J. Virol. 75, 6923–6932 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walsh, D., Mathews, M. B. & Mohr, I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb. Perspect. Biol. 5, a012351 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Katze, M. G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Dhungel, P., Cantu, F. M., Molina, J. A. & Yang, Z. Vaccinia virus as a master of host shutoff induction: targeting processes of the central dogma and beyond. Pathogens 9, 400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serio, A. W., Keepers, T., Andrews, L. & Krause, K. M. Aminoglycoside revival: review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal Plus 8, 1–20 (2018).

    Article  CAS  Google Scholar 

  21. Guo, C., Fordjour, F. K., Tsai, S. J., Morrell, J. C. & Gould, S. J. Choice of selectable marker affects recombinant protein expression in cells and exosomes. J. Biol. Chem. 297, 100838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aviner, R. The science of puromycin: from studies of ribosome function to applications in biotechnology. Comput. Struct. Biotechnol. J. 18, 1074–1083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaster, K. R., Burgett, S. G., Rao, R. N. & Ingolia, T. D. Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing. Nucleic Acids Res. 11, 6895–6911 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Powers, K. T. et al. Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Res. 49, 7665–7679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ilkow, C. S., Swift, S. L., Bell, J. C. & Diallo, J.-S. From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathog. 10, e1003836 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dogrammatzis, C., Waisner, H. & Kalamvoki, M. “Non-essential” proteins of HSV-1 with essential roles in vivo: a comprehensive review. Viruses 13, 17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Izsvák, Z. & Ivics, Z. Sleeping Beauty transposition: biology and applications for molecular therapy. Mol. Ther. 9, 147–156 (2004).

    Article  PubMed  Google Scholar 

  28. Azad, T. et al. Synthetic virology approaches to improve the safety and efficacy of oncolytic virus therapies. Nat. Commun. 14, 3035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al Ali, S., Baldanta, S., Fernández-Escobar, M. & Guerra, S. Use of reporter genes in the generation of vaccinia virus-derived vectors. Viruses 8, 134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee, M. S. et al. Molecular attenuation of vaccinia virus: mutant generation and animal characterization. J. Virol. 66, 2617–2630 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palanivelu, L., Liu, C.-H. & Lin, L.-T. Immunogenic cell death: the cornerstone of oncolytic viro-immunotherapy. Front. Immunol. 13, 1038226 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krabbe, T. & Altomonte, J. Fusogenic viruses in oncolytic immunotherapy. Cancers (Basel) 10, 216 (2018).

    Article  PubMed  Google Scholar 

  34. Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Todo, T., Martuza, R. L., Rabkin, S. D. & Johnson, P. A. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl Acad. Sci. USA 98, 6396–6401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanai, R. et al. Effect of γ34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J. Virol. 86, 4420–4431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilcox, D. R. & Longnecker, R. The herpes simplex virus neurovirulence factor γ34.5: revealing virus–host interactions. PLoS Pathog. 12, e1005449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chou, J., Kern, E. R., Whitley, R. J. & Roizman, B. Mapping of herpes simplex virus-1 neurovirulence to γ134.5, a gene nonessential for growth in culture. Science 250, 1262–1266 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR–Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Tang, N., Zhang, Y., Shen, Z., Yao, Y. & Nair, V. Application of CRISPR–Cas9 editing for virus engineering and the development of recombinant viral vaccines. CRISPR J. 4, 477–490 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Balliet, J. W., Kushnir, A. S. & Schaffer, P. A. Construction and characterization of a herpes simplex virus type I recombinant expressing green fluorescent protein: acute phase replication and reactivation in mice. Virology 361, 372–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Chon, H. J. et al. Tumor microenvironment remodeling by intratumoral oncolytic vaccinia virus enhances the efficacy of immune-checkpoint blockade. Clin. Cancer Res. 25, 1612–1623 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Nakao, S. et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci. Transl. Med. 12, eaax7992 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Rozman, B., Fisher, T. & Stern-Ginossar, N. Translation—a tug of war during viral infection. Mol. Cell 83, 481–495 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Stern-Ginossar, N., Thompson, S. R., Mathews, M. B. & Mohr, I. Translational control in virus-infected cells. Cold Spring Harb. Perspect. Biol. 11, a033001 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Upton, C., Slack, S., Hunter, A. L., Ehlers, A. & Roper, R. L. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J. Virol. 77, 7590–7600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kambara, H., Okano, H., Chiocca, E. A. & Saeki, Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res. 65, 2832–2839 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, L., Chard Dunmall, L. S., Cheng, Z. & Wang, Y. Remodeling the tumor microenvironment by oncolytic viruses: beyond oncolysis of tumor cells for cancer treatment. J. Immunother. Cancer 10, e004167 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang, J. K., Hong, J. & Yun, C.-O. Oncolytic viruses and immune checkpoint inhibitors: preclinical developments to clinical trials. Int. J. Mol. Sci. 21, 8627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Heidbuechel, J. P. W. & Engeland, C. E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol. 14, 63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Whatcott, C. J., Han, H., Posner, R. G., Hostetter, G. & Von Hoff, D. D. Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov. 1, 291–296 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hong, S.-O. et al. Transgenic viral expression of PH-20, IL-12, and sPD1-Fc enhances immune cell infiltration and anti-tumor efficacy of an oncolytic virus. Mol. Ther. Oncolytics 30, 301–315 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moaven, O., Mangieri, C. W., Stauffer, J. A., Anastasiadis, P. Z. & Borad, M. J. Strategies to develop potent oncolytic viruses and enhance their therapeutic efficacy. JCO Precis. Oncol. 5, PO.21.00003 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. Aitken, A. S. et al. Brief communication; a heterologous oncolytic bacteria-virus prime-boost approach for anticancer vaccination in mice. J. Immunother. 41, 125–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martin, N. T. & Bell, J. C. Oncolytic virus combination therapy: killing one bird with two stones. Mol. Ther. 26, 1414–1422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bridle, B. W. et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol. Ther. 17, 1814–1821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pol, J. G. et al. Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother. 7, 117–128 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sapkota, B. et al. Heterologous prime-boost strategies for COVID-19 vaccines. J. Travel Med. 29, taab191 (2022).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank other members of the J.C.B. and T. Azad laboratories for contributing to this work. We also acknowledge the support of the personnel from the Flow Cytometry Core Facility, Histology Core Facility and Animal Care and Veterinary Services of the Faculty of Medicine at the University of Ottawa. J.C.B. discloses support from the Canadian Institutes of Health Research (CIHR; grant number 448323), Canadian Cancer Society Research Institute, Prostate Cancer Canada and BioCanRx. T. Azad discloses support from the CIHR (grant number 49634), Terry Fox New Investigator Awards and Cancer Research Society Next Generation of Scientists Award. R.R. discloses support from a Vanier Canada Graduate Scholarship from CIHR. S.B. discloses support from a CIHR Postdoctoral Fellowship (grant number 187898).

Author information

Authors and Affiliations

Authors

Contributions

J.C.B. and T. Azad proposed and supervised the project. R.R., S.B., M.A., J. Petryk, N.K.Z., R.S., G.S.-L., L.D., A.P., J. Poutou, A.I.M.Z., C.C., V.H.G., Z.K., B.A., K.A.O., R.M., Z.A., F.M., V.M., E.W., A.N.-A., A.A. and F.P.A. performed the in vitro and in vivo experiments. R.R., T. Azad, S.B. and M.D.S. engineered the viruses. A.S., R.R. and T. Azad designed the figures and illustrations. R.R., T. Azad, R.S., A.S., F.M. and S.B. performed the data analyses. R.R., R.S., T. Azad, A.S. and J.C.B. wrote the manuscript. S.S.G.F., T.C.H., T. Alain, L.-H.T., C.S.I. and J.-S.D. contributed to study design.

Corresponding authors

Correspondence to John C. Bell or Taha Azad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Antonio Chiocca, Howard Kaufman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–3.

Reporting Summary

Peer Review File

Source data

Source Data Figs. 1–6

Source data and unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, R., Boulton, S., Ahmadi, M. et al. Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses. Nat. Biomed. Eng 9, 822–835 (2025). https://doi.org/10.1038/s41551-024-01259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-024-01259-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research