Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing phage therapy by coating single bacteriophage-infected bacteria with polymer to preserve phage vitality

Abstract

The efficacy of bacteriophages in treating bacterial infections largely depends on the phages’ vitality, which is impaired when they are naturally released from their hosts, as well as by culture media, manufacturing processes and other insults. Here, by wrapping phage-invaded bacteria individually with a polymeric nanoscale coating to preserve the microenvironment on phage-induced bacterial lysis, we show that, compared with naturally released phages, which have severely degraded proteins in their tail, the vitality of phages isolated from polymer-coated bacteria is maintained. Such latent phages could also be better amplified, and they more efficiently bound and lysed bacteria when clearing bacterial biofilms. In mice with bacterially induced enteritis and associated arthritis, latent phages released from orally administered bacteria coated with a polymer that dissolves at neutral pH had higher bioavailability and led to substantially better therapeutic outcomes than the administration of uncoated phages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wrapping of single bacteriophage-infected bacteria with a polymeric nanoscale coating to preserve the vitality of the replicating phages.
Fig. 2: Preparation of In-phages by forming a nanocoating.
Fig. 3: High vitality of intact phages.
Fig. 4: Abilities of In-phages in binding and lysing bacteria and clearing bacterial biofilms.
Fig. 5: High in vivo vitality of intact phages.
Fig. 6: Underlying mechanisms for the high vitality of In-phages.
Fig. 7: Therapeutic value of In-phages in treating intestinal infection and associated arthritis.
Fig. 8: Biosafety of In-phages.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions described in the study are provided within the paper and its Supplementary Information. The proteomics data are available via ProteomeXchange with identifier PXD054755. The raw and analysed datasets generated during the study are available for research purposes from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Gómez-Ochoa, S. A. et al. Efficacy of phage therapy in preclinical models of bacterial infection: a systematic review and meta-analysis. Lancet Microbe 3, 956–968 (2022).

    Article  Google Scholar 

  2. Abedon, S. T. Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv. Drug Deliv. Rev. 145, 18–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Petrovic Fabijan, A. et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 5, 465–472 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Ferry, T. et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 13, 4239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Fernández, L. et al. Gram-positive pneumonia: possibilities offered by phage therapy. Antibiotics 10, 1000 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hitchcock, N. M. et al. Current clinical landscape and global potential of bacteriophage therapy. Viruses 15, 1020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, Z. et al. Shelf-life prediction and storage stability of Aeromonas bacteriophage vB_AsM_ZHF. Virus Res. 323, 198997 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Luong, T., Salabarria, A. C., Edwards, R. A. & Roach, D. R. Standardized bacteriophage purification for personalized phage therapy. Nat. Protoc. 15, 2867–2890 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Article  PubMed  Google Scholar 

  11. Duyvejonck, H. et al. Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium. Viruses 13, 865 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bourdin, G. et al. Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl. Environ. Microbiol. 80, 1469–1476 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jończyk-Matysiak, E. et al. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev. Anti Infect. Ther. 17, 583–606 (2019).

    Article  PubMed  Google Scholar 

  14. Jończyk, E., Kłak, M., Międzybrodzki, R. & Górski, A. The influence of external factors on bacteriophages—review. Folia Microbiol. 56, 191–200 (2011).

    Article  Google Scholar 

  15. Górski, A., Borysowski, J. & Międzybrodzki, R. Phage therapy: towards a successful clinical trial. Antibiotics 9, 827 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4, 124–137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vinner, G. K. et al. Microencapsulation of Salmonella-specific bacteriophage Felix O1 using spray-drying in a pH-responsive formulation and direct compression tableting of powders into a solid oral dosage form. Pharmaceuticals 12, 43 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richards, K. & Malik, D. J. Microencapsulation of bacteriophages using membrane emulsification in different pH-triggered controlled release formulations for oral administration. Pharmaceuticals 14, 424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malik, D. J. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 249, 100–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Mourosi, J. T. et al. Understanding bacteriophage tail fiber interaction with host surface receptor: the key “Blueprint” for reprogramming phage host range. Int. J. Mol. Sci. 23, 12146 (2022).

    Article  Google Scholar 

  21. Bonachela, J. A., Choua, M. & Heath, M. R. Unconstrained coevolution of bacterial size and the latent period of plastic phage. PLoS ONE 17, e0268596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abedon, S. T. Selection for bacteriophage latent period length by bacterial density: a theoretical examination. Microb. Ecol. 18, 79–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Sheikh, A. et al. Enterotoxigenic Escherichia coli heat-labile toxin drives enteropathic changes in small intestinal epithelia. Nat. Commun. 13, 6886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rogers, A. P., Mileto, S. J. & Lyras, D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat. Rev. Microbiol. 21, 260–274 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Duan, Y., Young, R. & Schnabl, B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 19, 135–144 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., Sharma, S., Tom, L., Liao, Y.-T. & Wu, V. C. H. Gut phageome—an insight into the role and impact of gut microbiome and their correlation with mammal health and diseases. Microorganisms 11, 2454 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gutiérrez, B. & Domingo-Calap, P. Phage therapy in gastrointestinal diseases. Microorganisms 8, 1420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hsu, B. B. et al. In situ reprogramming of gut bacteria by oral delivery. Nat. Commun. 11, 5030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yin, H. et al. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Vet. Res. 52, 118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng, L. et al. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. Sci. Adv. 8, eabq2005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, P., Cao, Z., Wang, X., Li, J. & Liu, J. On-demand bacterial reactivation by restraining within a triggerable nanocoating. Adv. Mater. 32, 2002406 (2020).

    Article  CAS  Google Scholar 

  32. Mahmood, S. et al. Synthesis, characterization and safety profiling of eudragit-based pH-responsive hydrogels: a promising platform for colonic delivery of losartan potassium. Curr. Drug Deliv. 16, 548–564 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Moustafine, R. I. et al. Structural transformations during swelling of polycomplex matrices based on countercharged (meth) acrylate copolymers (EudragitR EPO/EudragitR L 100-55). J. Pharm. Sci. 100, 874–885 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sakhno, T. V., Barashkov, N. N., Irgibaeva, I. S., Pustovit, S. V. & Sakhno, Y. E. Polymer coatings for protection of wood and wood-based materials. Adv. Chem. Eng. 6, 93–110 (2016).

    Article  CAS  Google Scholar 

  35. Emslander, Q. et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 29, 1434–1445.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Stone, E., Campbell, K., Grant, I. & McAuliffe, O. Understanding and exploiting phage–host interactions. Viruses 11, 567 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Choi, V., Rohn, J. L., Stoodley, P., Carugo, D. & Stride, E. Drug delivery strategies for antibiofilm therapy. Nat. Rev. Microbiol. 21, 555–572 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Chegini, Z. et al. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann. Clin. Microbiol. Antimicrob. 19, 45 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Winstanley, C., O’Brien, S. & Brockhurst, M. A. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 24, 327–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ly-Chatain, M. H. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol. 5, 51 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hassan, A. Y., Lin, J. T., Ricker, N. & Anany, H. The age of phage: friend or foe in the new dawn of therapeutic and biocontrol applications? Pharmaceuticals 14, 199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dąbrowska, K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Colom, J. et al. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl. Environ. Microbiol. 81, 4841–4849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zampara, A. et al. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria. Sci. Rep. 10, 12087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brzozowska, E., Bazan, J. & Gamian, A. The functions of bacteriophage proteins. Postepy Hig. Med. Dosw. (Online) 65, 167–176 (2011).

    Article  PubMed  Google Scholar 

  49. Crosby, J. & Crump, M. P. The structural role of the carrier protein – active controller or passive carrier. Nat. Prod. Rep. 29, 1111–1137 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kreitz, J. et al. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357–364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bernal, P. et al. A novel stabilization mechanism for the type VI secretion system sheath. Proc. Natl Acad. Sci. USA 118, e2008500118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rodwell, E. V. et al. Isolation and characterisation of bacteriophages with activity against invasive non-typhoidal Salmonella causing bloodstream infection in Malawi. Viruses 13, 478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paradiso, R. et al. Complete genome sequences of three Siphoviridae bacteriophages infecting Salmonella enterica serovar enteritidis. Genome Announc. 4, e00939-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang, X. et al. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. Sci. Adv. 9, eade5079 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chriswell, M. E. et al. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci. Transl. Med. 14, eabn5166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miller, A. L. et al. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection. PLoS Pathog. 16, e1008591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mills, K. H. G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 23, 38–54 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Diard, M. et al. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat. Microbiol. 6, 830–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, K., Magri, G., Grasset, E. K. & Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 20, 427–441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Urrechaga, E., Bóveda, O., Aguirre, U., García, S. & Pulido, E. Neutrophil cell population data biomarkers for acute bacterial infection. J. Pathol. Infect. Dis. 1, 1–7 (2018).

    Article  Google Scholar 

  61. Takayuki, H. et al. Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin. Chim. Acta 457, 46–53 (2016).

    Article  Google Scholar 

  62. Kowalska-Kępczyńska, A., Weronika, K. & Helena, D. Innovative assessment practices of inflammation. Eur. J. Med. Technol. 1, 26 (2020).

    Google Scholar 

  63. Guo, Z. et al. Lymphopenia caused by virus infections and the mechanisms beyond. Viruses 13, 1876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Son, B. et al. Isolation and characterization of a Weizmannia coagulans bacteriophage Youna2 and its endolysin PlyYouna2. J. Microbiol. Biotechnol. 33, 67 (2023).

    Article  Google Scholar 

  65. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez, J. J. & Li, S. TomoAlign: A novel approach to correcting sample motion and 3D CTF in CryoET. J. Struct. Biol. 213, 4 (2021).

    Article  Google Scholar 

  68. Winkler, H. et al. Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. J. Struct. Biol. 165, 64–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Prot. Sci. 27, 14–25 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. He for offering the phage of S. aureus. This work was financially supported by the National Key Research and Development Program of China (2021YFA0909400, J.L.), the National Natural Science Foundation of China (22425505, J.L.; 22307077, G.X.; 32201144, S.L.; 22375127, Y.P.) and the Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20210700, Y.P.).

Author information

Authors and Affiliations

Contributions

J.L. supervised the project. J.L., S.L. and G.X. designed the experiments. S.L. and G.X. performed and interpreted the experiments. S.L. conducted cellular and animal experiments. J.H. performed the single-particle cryo-TEM experiment. L.M. and Y.P. provided analytical tools, critical comments and suggestions. G.X., S.L. and J.L. wrote the paper.

Corresponding author

Correspondence to Jinyao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Characterization of the coating on bacteria.

a, Representative TEM images of the sections of S. Typhimurium and copolymer-coated phage-infected S. Typhimurium. Scale bars, 500 nm. The formed nanocoating structure on bacterial surface was highlighted in an enlarged view. Scale bar, 100 nm. b, c, Flow cytometry (b) histograms and (c) scatter plots of S. Typhimurium and copolymer-coated phage-infected S. Typhimurium, respectively. d, Percentage of copolymer-coated phage-infected S. Typhimurium after coating formation. e, MFI of S. Typhimurium and Cy3-labeled copolymer-coated phage-infected S. Typhimurium, respectively. Data are represented as mean ± s.d. (n = 5). P values were determined using two-tailed t-test.

Source data

Extended Data Fig. 2 Proteomic analysis of In-phages and Ex-phages.

a, b, The (a) principal component analysis and (b) Venn diagram of the protein expression data in Ex-phages and In-phages. c, Dotrod-heatmap of the proteins of Ex-phages and In-phages. d, A co-occurrence network constructed from the relative abundances of differential proteins in Ex-phages versus In-phages. eg, Comparative analysis of (e) DNA ligase, (f) DNA helicase, and (g) ribonucleoside-diphosphate reductase. Data are represented as mean ± s.d. (n = 3). P values were determined using two-tail t-test.

Source data

Extended Data Fig. 3 Inhibitory effect of phages on the growth of S. Typhimurium and the colonization in the gut.

a, Experimental design for the animal study of S. Typhimurium infection. b, Bacterial counts in the feces. c, Confocal images of the colon sections stained with S. Typhimurium O antibody (green) and DAPI (blue). Scale bar, 50 µm. d, Levels of phages in the feces. e, Abundance of phages in the whole intestine at the end of treatment. Data are represented as mean ± s.d. (n = 5–6). P value was determined using one-way ANOVA. Elements created with BioRender.com.

Source data

Supplementary information

Supplementary Information

Supplementary figures.

Reporting Summary

Supplementary Data

Source data for the supplementary figures.

Source data

Source Data for Figs. 1–8

Statistical source data.

Source Data for Extended Data Figs. 1–3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Xie, G., He, J. et al. Enhancing phage therapy by coating single bacteriophage-infected bacteria with polymer to preserve phage vitality. Nat. Biomed. Eng 9, 1155–1171 (2025). https://doi.org/10.1038/s41551-025-01354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01354-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology