Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of tolerogenic antigen-presenting cells in vivo via the delivery of mRNA encoding PDL1 within lipid nanoparticles

Abstract

Tolerogenic antigen-presenting cells (APCs) are promising as therapeutics for suppressing T cell activation in autoimmune diseases. However, the isolation and ex vivo manipulation of autologous APCs is costly, and the process is customized for each patient. Here we show that tolerogenic APCs can be generated in vivo by delivering, via lipid nanoparticles, messenger RNA coding for the inhibitory protein programmed death ligand 1. We optimized a lipid-nanoparticle formulation to minimize its immunogenicity by reducing the molar ratio of nitrogen atoms on the ionizable lipid and the phosphate groups on the encapsulated mRNA. In mouse models of rheumatoid arthritis and ulcerative colitis, subcutaneous delivery of nanoparticles encapsulating mRNA encoding programmed death ligand 1 reduced the fraction of activated T cells, promoted the induction of regulatory T cells and effectively prevented disease progression. The method may allow for the engineering of APCs that target specific autoantigens or that integrate additional inhibitory molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo-produced tol-APCs by LNPs/mPDL1 selectively target activated T cells for the treatment of AIDs.
Fig. 2: Optimization of LNP formulation with low immunogenicity using DOE.
Fig. 3: Production of tol-APCs by LNPs/mPDL1 treatment.
Fig. 4: Tol-APCs produced by LNPs/mPDL1 reduce proliferation and induce apoptosis of activated T cells in vitro.
Fig. 5: In vivo-produced tol-APCs by LNPs/mPDL1 treatment selectively reduce activated T cells in vivo.
Fig. 6: In vivo-produced tol-APCs inhibit the progression of RA.
Fig. 7: In vivo-produced tol-APCs mediate potent therapeutic effects in DSS-induced UC mice.

Similar content being viewed by others

Data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Fugger, L., Jensen, L. T. & Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181, 63–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).

    Article  PubMed  Google Scholar 

  3. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cully, M. T cell-regulating therapies for autoimmune diseases take FDA rejection in stride. Nat. Rev. Drug Discov. 20, 655–657 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Mullard, A. PD1 agonist antibody passes first phase II trial for autoimmune disease. Nat. Rev. Drug Discov. 22, 526 (2023).

    PubMed  Google Scholar 

  6. Zhang, B. et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat. Biomed. Eng. 5, 1288–1305 (2021).

    Article  PubMed  Google Scholar 

  7. Edner, N. M., Carlesso, G., Rush, J. S. & Walker, L. S. K. Targeting co-stimulatory molecules in autoimmune disease. Nat. Rev. Drug Discov. 19, 860–883 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Cifuentes-Rius, A., Desai, A., Yuen, D., Johnston, A. P. R. & Voelcker, N. H. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol. 16, 37–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Audiger, C., Rahman, M. J., Yun, T. J., Tarbell, K. V. & Lesage, S. The importance of dendritic cells in maintaining immune tolerance. J. Immunol. 198, 2223–2231 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, C. C. & Rudensky, A. Y. Spatiotemporal regulation of peripheral T cell tolerance. Science 380, 472–478 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Kenison, J. E., Stevens, N. A. & Quintana, F. J. Therapeutic induction of antigen-specific immune tolerance. Nat. Rev. Immunol. 24, 338–357 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Sugiura, D. et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364, 558–566 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Giannoukakis, N., Phillips, B., Finegold, D., Harnaha, J. & Trucco, M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care 34, 2026–2032 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morante-Palacios, O., Fondelli, F., Ballestar, E. & Martínez-Cáceres, E. M. Tolerogenic dendritic cells in autoimmunity and inflammatory diseases. Trends Immunol. 42, 59–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Zubizarreta, I. et al. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc. Natl Acad. Sci. USA 116, 8463–8470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl. Med. 7, 290ra87 (2015).

    Article  PubMed  Google Scholar 

  19. Passeri, L., Marta, F., Bassi, V. & Gregori, S. Tolerogenic dendritic cell-based approaches in autoimmunity. Int. J. Mol. Sci. 22, 8415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Hassett, K. J. et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J. Control. Release 335, 237–246 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Pardi, N. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verbeke, R., Hogan, M. J., Loré, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, C., Zhao, C., Wang, W., Liu, X. & Deng, H. Biomimetic noncationic lipid nanoparticles for mRNA delivery. Proc. Natl Acad. Sci. USA 120, e2311276120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Wilson, E. et al. Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N. Engl. J. Med. 389, 2233–2244 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, P. et al. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat. Biomed. Eng. 3, 292–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, Y. et al. Omicron-specific mRNA vaccine elicits potent immune responses in mice, hamsters, and nonhuman primates. Cell Res. 32, 949–952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng, Q. et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 11, 4835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Shea, J. J., Laurence, A. & McInnes, I. B. Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nat. Rev. Rheumatol. 9, 173–182 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kingsmore, K. M., Grammer, A. C. & Lipsky, P. E. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat. Rev. Rheumatol. 16, 32–52 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Brand, D. D., Latham, K. A. & Rosloniec, E. F. Collagen-induced arthritis. Nat. Protoc. 2, 1269–1275 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, J. et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat. Commun. 13, 676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, C. et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat. Immunol. 19, 755–765 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Van Assche, G. et al. Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. Gastroenterology 125, 1025–1031 (2003).

    PubMed  Google Scholar 

  41. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  44. Serra, P. & Santamaria, P. Antigen-specific therapeutic approaches for autoimmunity. Nat. Biotechnol. 37, 238–251 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Miller, S. D., Turley, D. M. & Podojil, J. R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 7, 665–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kurochkina, Y. et al. SAT0212 The safety and tolerability of intra-articular injection of tolerogenic dendritic cells in patients with rheumatoid arthritis: the preliminary results. Ann. Rheum. Dis. 77, 966–967 (2018).

    Article  Google Scholar 

  47. Jauregui-Amezaga, A. et al. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study. J. Crohns Colitis 9, 1071–1078 (2015).

    Article  PubMed  Google Scholar 

  48. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bluestone, J. A. & Tang, Q. Treg cells—the next frontier of cell therapy. Science 362, 154–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Murray, J. A. et al. Safety and tolerability of KAN-101, a liver-targeted immune tolerance therapy, in patients with coeliac disease (ACeD): a phase 1 trial. Lancet Gastroenterol. Hepatol. 8, 735–747 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Tremain, A. C. et al. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat. Biomed. Eng. 7, 1142–1155 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Kelly, C. P. et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study. Gastroenterology 161, 66–80.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Singha, S. et al. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat. Nanotechnol. 12, 701–710 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Katakura, K. et al. Toll-like receptor 9–induced type I IFN protects mice from experimental colitis. J. Clin. Invest. 115, 695–702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moskowitz, R. W. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil. 14, 13–29 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52025036 to Y.W., 82173390 to M.L. and 52495014 to Y.W.), the National Key R&D Program of China (2020YFA0710700 and 2022YFC2303300 to Y.W.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0490000 and XDB0940303 to Y.W.), the Anhui Provincial Key Research and Development Project (2023s07020019 to Y.W.), the Anhui Provincial Major Science and Technology Project (202303a07020010 to Y.W.), the Anhui Provincial Natural Science Foundation (2408085J042 to M.L.), the project of collaborative innovation for colleges of Anhui province (GXXT-2022-063 to M.L.) and the USTC Research Funds of the Double First-Class Initiative (YD9100002054 to Y.W. and YD9110002021 to M.L.). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. This work was partially carried out at the Instruments Center for Physical Science, University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., M.L., Y.L. and Q.L. conceptualized and designed the research. Y.L., Q.L., B.Z., S.C., Y.S., Z.L., J.Z. and Y.Y. performed the experiments. S.C. provided help in designing LNP formulations. Y.L., Q.L. and B.Z. analysed the experimental data. Y.L., M.L., Q.L., B.Z. and Y.W. prepared the figures and wrote the paper. Y.W. supervised the project.

Corresponding authors

Correspondence to Min Li or Yucai Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Jeffrey Hubbell, Tianmeng Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 In vivo-produced tol-APCs inhibit RA progression.

a, Statistical data of OARSI score. b, c, The percentage of IFN-γ+ (b) and TNF-α+ (c) area per FOV. d, Representative images of CD4, CD8, and Foxp3 staining from the knee joint of one mouse in a group of four. Scale bar = 200 µm. Arrows refer to Foxp3+ cells. e-g, Number of CD4+ (e), CD8+ (f) and Foxp3+ (g) cells per FOV. RA mice were subcutaneously treated with PBS, LNPs, or LNPs/mPDL1 (5 μg mRNA) at the lower right back. Mice treated with iTNF-α served as the positive control group. Normal group comprises healthy mice. n = 4 biologically independent mice per group for data in a-c and e-g. Data are expressed as the mean ± s.e.m. Statistical significances were determined using one-way ANOVA with Dunnett’s post hoc test. Comparisons were performed between the LNPs/mPDL1 group and each of the other groups. N.S. is P ≥ 0.05, and significant P values are displayed.

Source data

Extended Data Fig. 2 In vivo-produced tol-APCs mediate potent therapeutic effects in DSS-induced UC mice.

a, Representative images of CD8, Foxp3, IFN-γ, and TNF-α staining from the colon of one mouse in a group of four. Arrows refer to Foxp3+ cells. Scale bar = 200 µm. b-e, The number of CD8+ (b) and Foxp3+ (c) cells and the percentage of IFN-γ+ (d) and TNF-α+ (e) area per FOV. Mice were treated with PBS, LNPs, or LNPs/mPDL1 (5 μg mRNA) via subcutaneous injection at the lower right back. Mice treated with cyclosporine served as the positive control group. Normal group comprises healthy mice. n = 4 biologically independent mice per group for data in b-e. Data are expressed as the mean ± s.e.m. Statistical significances were determined using one-way ANOVA with Dunnett’s post hoc test. Comparisons were performed between the LNPs/mPDL1 group and each of the other groups. N.S. is P ≥ 0.05, and significant P values are displayed.

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Peer Review File

Supplementary data

Source data for the supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Q., Zhang, B. et al. Generation of tolerogenic antigen-presenting cells in vivo via the delivery of mRNA encoding PDL1 within lipid nanoparticles. Nat. Biomed. Eng 9, 1320–1334 (2025). https://doi.org/10.1038/s41551-025-01373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01373-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research