Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking

Abstract

Small materials with pliability and untethered mobility are particularly suitable for minimally invasive medical interventions inside the body. However, the capabilities and applicability of such soft ‘robots’ are restricted by foreign-body responses to them and by the need to get them cleared from the body after the intervention. Here we report the development of biodegradable magnetized biohybrid blood hydrogel fibres that evade immune recognition, and their applicability for targeted intracranial tumour therapy with real-time tracking through X-ray fluoroscopy. The gel fibres can be made of the patient’s own blood mixed with a small amount of magnetic particles and can be produced in about 15 min. We show that the locomotion of intracranially injected gel fibres through cerebrospinal fluid can be remotely controlled under a magnetic field and fluoroscopically tracked, and that a drug encapsulated in the gels can be released on demand under magnetic control, as we show for the delivery of doxorubicin to intracranial tumours in the minipigs. Biodegradable soft actuatable materials that avoid foreign-body responses may aid the development of personalized targeted interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic showing the intracranial delivery of the BBHFs under the combined system of magnetic actuation unit and fluoroscopy.
Fig. 2: Fabrication and characterization of BBHFs.
Fig. 3: Mechanical properties of BBHFs.
Fig. 4: Multimode locomotion of BBHFs.
Fig. 5: On-demand drug release by high-strength rotating magnetic field-induced splitting of the robots.
Fig. 6: Intracranial delivery of BBHFs (ex vivo).
Fig. 7: In vivo intracranial tumour therapy in pigs using BBHFs.

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Fomchenko, E. I. & Holland, E. C. Origins of brain tumors—a disease of stem cells? Nat. Clin. Pract. Neurol. 2, 288–289 (2006).

    Article  PubMed  Google Scholar 

  2. Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 24, v1–v95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 358, 492–507 (2008).

    Article  Google Scholar 

  5. Li, J. et al. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, Y. et al. Bioinspired hydrogel actuator for soft robotics: opportunity and challenges. Nano Today 49, 101764 (2023).

    Article  CAS  Google Scholar 

  7. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Horejs, C. Speedy soft robots. Nat. Rev. Mater. 5, 785–785 (2020).

    Article  Google Scholar 

  9. Ebrahimi, N. et al. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 31, 2005137 (2021).

    Article  CAS  Google Scholar 

  10. Zhang, Y. et al. Submillimeter multifunctional ferromagnetic fiber robots for navigation, sensing, and modulation. Adv. Healthc. Mater. 12, 2300964 (2023).

    Article  CAS  Google Scholar 

  11. Abdelaziz, M. E. M. K. et al. Fiberbots: robotic fibers for high-precision minimally invasive surgery. Sci. Adv. 10, adj1984 (2024).

    Article  Google Scholar 

  12. Ye, Z. et al. Liquid-metal soft electronics coupled with multilegged robots for targeted delivery in the gastrointestinal tract. Device 2, 100181 (2024).

    Article  Google Scholar 

  13. Leber, A. et al. Highly integrated multi-material fibers for soft robotics. Adv. Sci. 10, 2204016 (2023).

    Article  CAS  Google Scholar 

  14. Barbot, A. et al. Floating magnetic microrobots for fiber functionalization. Sci. Robot. 4, eaax8336 (2019).

    Article  PubMed  Google Scholar 

  15. Xu, T. et al. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 4, eaav4494 (2019).

    Article  PubMed  Google Scholar 

  16. Guix, M. et al. Biohybrid soft robots with self-stimulating skeletons. Sci. Robot. 6, eabe7577 (2021).

    Article  PubMed  Google Scholar 

  17. Wang, B. et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6, eabd2813 (2021).

    Article  PubMed  Google Scholar 

  18. Mundaca-Uribe, R. et al. Towards multifunctional robotic pills. Nat. Biomed. Eng. 8, 1334–1346 (2024).

    Article  PubMed  Google Scholar 

  19. Kim, Y. et al. Ferromagnetic soft continuum robots. Sci. Robot. 4, eaax7329 (2019).

    Article  PubMed  Google Scholar 

  20. Liu, X. et al. Magnetic soft microfiberbots for robotic embolization. Sci. Robot. 9, eadh2479 (2024).

    Article  PubMed  Google Scholar 

  21. Xu, C. et al. Small-scale magnetic actuators with optimal six degrees-of-freedom. Adv. Mater. 33, 2100170 (2021).

    Article  CAS  Google Scholar 

  22. Pilz da Cunha, M. et al. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568–6578 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Shih, B. et al. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5, eaaz9239 (2020).

    Article  PubMed  Google Scholar 

  24. Xu, T. et al. Multi-modal locomotion control of needle-like microrobots assembled by ferromagnetic nanoparticles. In Proc. IEEE/ASME Transactions on Mechatronics Vol. 27 4327–4338 (IEEE, 2022).

  25. Mirvakili, S. M. et al. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Robot. 5, eaaz4239 (2020).

    Article  PubMed  Google Scholar 

  26. Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

    Article  PubMed  Google Scholar 

  27. Yang, X. et al. An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Sci. Robot. 5, eabc8191 (2020).

    Article  PubMed  Google Scholar 

  28. Hu, X. et al. Magnetic soft micromachines made of linked microactuator networks. Sci. Adv. 7, eabe8436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen, L. et al. Tensegrity metamaterials for soft robotics. Sci. Robot. 5, eabd9158 (2020).

    Article  PubMed  Google Scholar 

  30. Xu, T., Huang, C., Lai, Z. & Wu, X. Independent control strategy of multiple magnetic flexible millirobots for position control and path following. In Proc. IEEE Transactions on Robotics Vol. 38 2875–2887 (IEEE, 2022).

  31. Alapan, Y. et al. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6, eabc6414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. Microrobots for targeted delivery and therapy in digestive system. ACS Nano 17, 27–50 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, B. et al. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33, 2002047 (2021).

    Article  CAS  Google Scholar 

  34. Drotman, D. et al. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6, eaay2627 (2021).

    Article  PubMed  Google Scholar 

  35. Le, X. et al. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 6, 1801584 (2019).

    Article  Google Scholar 

  36. Feinberg, A. W. Biological soft robotics. Annu. Rev. Biomed. Eng. 17, 243–265 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    Article  CAS  Google Scholar 

  38. Cianchetti, M. et al. Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153 (2018).

    Article  Google Scholar 

  39. Huang, H.-W. et al. Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratner, B. D. Biomaterials: been there, done that, and evolving into the future. Annu. Rev. Biomed. Eng. 21, 171 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Anderson, J. M. et al. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Schuerle, S. et al. Robotically controlled microprey to resolve initial attack modes preceding phagocytosis. Sci. Robot. 2, eaah6094 (2017).

    Article  PubMed  Google Scholar 

  43. Yasa, I. C. et al. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, eaaz3867 (2020).

    Article  PubMed  Google Scholar 

  44. Cabanach, P. et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 32, 2003013 (2020).

    Article  CAS  Google Scholar 

  45. Zhang, H. et al. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6, eaaz9519 (2021).

    Article  PubMed  Google Scholar 

  46. Dai, Y. et al. Precise control of customized macrophage cell robot for targeted therapy of solid tumors with minimal invasion. Small 17, 2103986 (2021).

    Article  CAS  Google Scholar 

  47. Fang-Yen, C. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 20323–20328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yuan, J. et al. Gait synchronization in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 111, 6865–6870 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng, H. et al. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 44, 2782–2785 (2005).

    Article  CAS  Google Scholar 

  50. Dong, X. et al. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans. Sci. Robot. 6, eabe3950 (2021).

    Article  PubMed  Google Scholar 

  51. Xia, N. et al. Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform. Adv. Mater. 34, 2109126 (2022).

    Article  CAS  Google Scholar 

  52. Floyd, S. et al. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int. J. Robot. Res. 30, 1553–1565 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Zhu from Shenzhen Top Biotechnology Limited Company for their technical support and assistance with the animal experiments. We thank L. Zheng from Shenzhen University for their technical support in materials characterization. We thank the Instrument Analysis Center of Shenzhen University for assistance with the SEM analysis. T.X. discloses support for the publication of this study from the National Key Research and Development Project (2023YFB4705300). B.W. discloses support for the research described in this study from the National Natural Science Foundation of China (52475308), the Shenzhen Science and Technology Innovation Committee Projects (JCYJ20220531103409021) and the Shenzhen Medical Research Fund (SMRF A2303074). J.S. discloses support for the publication of this study from the National Natural Science Foundation of China (52471256) and the Shenzhen Science and Technology Innovation Committee Projects (SGDX20220530111405038, JCYJ20240813115822030). T.X. also discloses support for the publication of this study from the National Natural Science Foundation of China (62022087 and U22A2064), the Shenzhen Science and Technology Innovation Committee Projects (RCJC20231211085926038, RCBS20200714114920190 and JCYJ20220818101611025) and the Guangdong Basic and Applied Basic Research Foundation (2022B1515120010). Z.Y. discloses support for the publication of this study from the Guangdong University Students Science and Technology Innovation Cultivation Special Fund Project (pdjh2023b0450). L.Z. discloses support for the publication of this study from the Hong Kong Research Grants Council (RGC) with Research Impact Fund (R4015-21), the Research Fellow Scheme (RFS2122-4S03), the Strategic Topics Grant (STG1/E-401/23-N) and the Croucher Foundation Grant (CAS20403). X.W. discloses support for the research described in this study from the National Natural Science Foundation of China (62125307). We also disclose support from the SIAT-CUHK Joint Laboratory of Robotics and Intelligent Systems and the Multi-scale Medical Robotics Centre (MRC), InnoHK, at the Hong Kong Science Park.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.W., L.Z. and T.X.; methodology, B.W., J.S. and C.H.; investigation, B.W., J.S., C.H., Z.Y. and J.H.; supervision, B.W., L.Z. and T.X.; writing—original draft, B.W. and C.H.; writing—review and editing, B.W., J.S., L.Z., X.W., Z.G. and T.X.; funding acquisition, B.W., J.S., Z.Y., L.Z. and T.X.

Corresponding authors

Correspondence to Ben Wang, Li Zhang or Tiantian Xu.

Ethics declarations

Competing interests

B.W. is an inventor with a Chinese patent (patent number ZL202111388615.2, filed on 22 November 2021) on the fabrication method of a magnetic biodegradable blood hydrogel. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Qiang He, Christopher Nguyen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures, tables, references and video captions.

Reporting Summary

Supplementary Video 1

Multimodal locomotion of BBHFs.

Supplementary Video 2

Motion of BBHFs in confined environments.

Supplementary Video 3

Motion of BBHF in a brain phantom.

Supplementary Video 4

Motion through the porcine cerebral cortex with gullies.

Supplementary Video 5

Splitting and drug release process of a BBHF.

Source data

Source Data Figs. 2–5 and 7

Source data for Figs. 2–5 and 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Shen, J., Huang, C. et al. Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking. Nat. Biomed. Eng 9, 1471–1485 (2025). https://doi.org/10.1038/s41551-025-01382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01382-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing