Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Movement-responsive deep brain stimulation for Parkinson’s disease using a remotely optimized neural decoder

Abstract

Deep brain stimulation (DBS) has garnered widespread use as an effective treatment for advanced Parkinson’s disease. Conventional DBS (cDBS) provides electrical stimulation to the basal ganglia at fixed amplitude and frequency, yet patients’ therapeutic needs are often dynamic with residual symptom fluctuations or side effects. Adaptive DBS (aDBS) is an emerging technology that modulates stimulation with respect to real-time clinical, physiological or behavioural states, enabling therapy to dynamically align with patient-specific symptoms. Here we report an aDBS algorithm intended to mitigate movement slowness by delivering targeted stimulation increases during movement using decoded motor signals from the brain. Our approach demonstrated improvements in dominant hand movement speeds and study participant-reported therapeutic efficacy compared with an inverted control, as well as increased typing speed and reduced dyskinesia compared with cDBS. Furthermore, we demonstrate proof of principle of a machine learning pipeline capable of remotely optimizing aDBS parameters in a home setting. This work illustrates the potential of movement-responsive aDBS as a promising therapeutic approach and highlights how machine learning-assisted programming can simplify complex optimization to facilitate translational scalability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Movement-responsive DBS theoretical framework.
Fig. 2: Optimizing the embedded movement classifier.
Fig. 3: Personalizing power bands improves algorithm performance.
Fig. 4: Final offline model performance.
Fig. 5: Performance of neural classifiers is maintained during online adaptive stimulation.
Fig. 6: Movement-responsive stimulation impacts self-perceived therapeutic quality, movement speed and dyskinesia in a performance-dependent manner.
Fig. 7: Movement adaptive stimulation increases keypress responsiveness during naturalistic typing.

Similar content being viewed by others

Data availability

All processed data supporting the analyses of this study or displayed in figures are available via the Dryad repository at https://doi.org/10.5061/dryad.4xgxd25hw (ref. 69). Any additional requests for raw data may be directed to the corresponding author and will be provided under reasonable request and with additional consent of the study participant.

Code availability

All machine learning and data analysis code is available via GitHub at https://github.com/Weill-Neurohub-OPTiMaL/dixon-2025-move-adbs (ref. 70). The rcssim package is available via GitHub at https://github.com/Weill-Neurohub-OPTiMaL/rcs-simulation (ref. 71).

References

  1. Ashkan, K., Rogers, P., Bergman, H. & Ughratdar, I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 13, 548–554 (2017).

    Article  PubMed  Google Scholar 

  2. McGregor, M. M. & Nelson, A. B. Circuit mechanisms of Parkinson’s disease. Neuron 101, 1042–1056 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Deuschl, G. et al. A randomized trial of deep brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355, 896–908 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Follett, K. A. et al. Pallidal versus subthalamic deep brain stimulation for Parkinson’s disease. N. Engl. J. Med. 362, 2077–2091 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Odekerken, V. J. J. et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 12, 37–44 (2013).

    Article  PubMed  Google Scholar 

  6. Pozzi, N. G. & Isaias, I. U. in Handbook of Clinical Neurology 1st edn, Vol. 184 (eds Quartarone A., Ghilardi M.F. & Boller F.) 273–284 (Elsevier B.V., 2022).

  7. Kühn, A. A., Kupsch, A., Schneider, G. H. & Brown, P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 23, 1956–1960 (2006).

    Article  PubMed  Google Scholar 

  8. Neumann, W. J. et al. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease. Mov. Disord. 31, 1748–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lofredi, R. et al. Subthalamic beta bursts correlate with dopamine-dependent motor symptoms in 106 Parkinson’s patients. npj Parkinsons Dis. 9, 1–9 (2023).

    Article  Google Scholar 

  10. Little, S. & Brown, P. Debugging adaptive deep brain stimulation for Parkinson’s disease. Mov. Disord. 35, 555–561 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Little, S. et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 87, 717–721 (2016).

    Article  PubMed  Google Scholar 

  13. Tinkhauser, G. et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain 140, 1053–1067 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. He, S. et al. Beta-triggered adaptive deep brain stimulation during reaching movement in Parkinson’s disease. Brain 146, 5015–5030 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosa, M. et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov. Disord. 32, 628–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arlotti, M. et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology 90, e971–e976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Velisar, A. et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 12, 868–876 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oehrn, C. R. et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: a blinded randomized feasibility trial. Nat. Med. 30, 3345–3356 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kühn, A. A. et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127, 735–746 (2004).

    Article  PubMed  Google Scholar 

  21. Eisinger, R. S. et al. Parkinsonian beta dynamics during rest and movement in the dorsal pallidum and subthalamic nucleus. J. Neurosci. 40, 2859–2867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, L. A. et al. Closed-loop deep brain stimulation effects on Parkinsonian motor symptoms in a non-human primate—is beta enough? Brain Stimul. 9, 892–896 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iturrate, I. et al. Beta-driven closed-loop deep brain stimulation can compromise human motor behavior in Parkinson’s disease. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/696385v1.abstract (2019).

  24. Bologna, M., Paparella, G., Fasano, A., Hallett, M. & Berardelli, A. Evolving concepts on bradykinesia. Brain 143, 727–750 (2020).

    Article  PubMed  Google Scholar 

  25. Chevalier, G. & Deniau, J. M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Ivry, R. B. & Spencer, R. M. C. The neural representation of time. Curr. Opin. Neurobiol. 14, 225–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Klaus, A., Alves Da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Wichmann, T. & DeLong, M. R. Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13, 264–283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Turner, R. S. & Desmurget, M. Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20, 704–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Darbin, O. et al. Subthalamic nucleus deep brain stimulation driven by primary motor cortex γ2 activity in parkinsonian monkeys. Sci. Rep. 12, 1–16 (2022).

    Article  Google Scholar 

  31. Ferleger, B. I. et al. Fully implanted adaptive deep brain stimulation in freely moving essential tremor patients. J. Neural Eng. 17, 056026 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Herron, J. A. et al. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J. Neurosurg. 127, 580–587 (2017).

    Article  PubMed  Google Scholar 

  33. Opri, E. et al. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci. Transl. Med. 12, eaay7680 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. He, S. et al. Closed-loop deep brain stimulation for essential tremor based on thalamic local field potentials. Mov. Disord. 36, 863–873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sellers, K. K. et al. Analysis-rcs-data: open-source toolbox for the ingestion, time-alignment, and visualization of sense and stimulation data from the Medtronic Summit RC+S system. Front. Hum. Neurosci. 15, 1–14 (2021).

    Article  Google Scholar 

  36. Strandquist, G. et al. Bringing the clinic home: an at-home multi-modal data collection ecosystem to support adaptive deep brain stimulation. J. Vis. Exp. 197, e65305 (2023).

    Google Scholar 

  37. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

    Article  PubMed  Google Scholar 

  38. Maciel, R., Zúñiga-Ramírez, C., Munhoz, R. P., Zurowski, M. & Fasano, A. Functional dyskinesias following subthalamic nucleus deep brain stimulation in Parkinson’s disease: a report of three cases. Mov. Disord. Clin. Pract. 8, 114–117 (2021).

    Article  PubMed  Google Scholar 

  39. Baizabal-Carvallo, J. F. & Jankovic, J. Movement disorders induced by deep brain stimulation. Parkinsonism Relat. Disord. 25, 1–9 (2016).

    Article  PubMed  Google Scholar 

  40. Rodríguez-Molinero, A. et al. Estimating dyskinesia severity in Parkinson’s disease by using a waist-worn sensor: concurrent validity study. Sci. Rep. 9, 1–7 (2019).

    Article  Google Scholar 

  41. Dai, H., Zhang, P. & Lueth, T. C. Quantitative assessment of Parkinsonian tremor based on an inertial measurement unit. Sensors 15, 25055–25071 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Holt, A. B., Wilson, D., Shinn, M., Moehlis, J. & Netoff, T. I. Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS Comput. Biol. 12, e1005011 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grado, L. L., Johnson, M. D. & Netoff, T. I. Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS Comput. Biol. 14, e1006606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Popovych, O. V. & Tass, P. A. Adaptive delivery of continuous and delayed feedback deep brain stimulation—a computational study. Sci. Rep. 9, 10585 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Swann, N. C. et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 15, e15–e16 (2018).

    Article  Google Scholar 

  46. Gilron, R. et al. Sleep-aware adaptive deep brain stimulation control: chronic use at home with dual independent linear discriminate detectors. Front. Neurosci. 15, 732499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smyth, C. et al. Adaptive deep brain stimulation for sleep stage targeting in Parkinson’s disease. Brain Stimul. 16, 1292–1296 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anjum, M. F. et al. Multi-night cortico-basal recordings reveal mechanisms of NREM slow-wave suppression and spontaneous awakenings in Parkinson’s disease. Nat. Commun. 15, 1793 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, H. J., Jeon, B. S. & Paek, S. H. Non-motor symptoms and subthalamic deep brain stimulation in Parkinson’s disease. J. Mov. Disord. 8, 83–91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kurtis, M. M., Rajah, T., Delgado, L. F. & Dafsari, H. S. The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence. npj Parkinsons Dis. 3, 1–12 (2017).

    Article  Google Scholar 

  51. Prange, S. et al. Limbic stimulation drives mania in STN-DBS in Parkinson disease: a prospective study. Ann. Neurol. 92, 411–417 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Hristova, A. et al. Effect and time course of deep brain stimulation of the globus pallidus and subthalamus on motor features of Parkinson’s disease. Clin. Neuropharmacol. 23, 208–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Koeglsperger, T., Palleis, C., Hell, F., Mehrkens, J. H. & Bötzel, K. Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies. Front. Neurol. 10, 1–20 (2019).

    Article  Google Scholar 

  54. Merk, T. et al. Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. eLife 11, e75126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ansó, J. et al. Concurrent stimulation and sensing in bi-directional brain interfaces: a multi-site translational experience. J. Neural Eng. 19, 026025 (2022).

    Article  Google Scholar 

  56. Degenhart, A. D. et al. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J. Neural Eng. 13, 139–148 (2016).

    Article  Google Scholar 

  57. Volkova, K., Lebedev, M. A., Kaplan, A. & Ossadtchi, A. Decoding movement from electrocorticographic activity: a review. Front. Neuroinform. 13, 00074 (2019).

    Article  Google Scholar 

  58. Blakely, T., Miller, K. J., Zanos, S. P., Rao, R. P. N. & Ojemann, J. G. Robust, long-term control of an electrocorticographic brain-computer interface with fixed parameters. Neurosurg. Focus 27, 4–8 (2009).

    Article  Google Scholar 

  59. Pels, E. G. M. et al. Stability of a chronic implanted brain-computer interface in late-stage amyotrophic lateral sclerosis. Clin. Neurophysiol. 130, 1798–1803 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Asaad, W. F. & Sheth, S. A. What’s the n? On sample size vs. subject number for brain-behavior neurophysiology and neuromodulation. Neuron 112, 2086–2090 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Bundy, D. T., Pahwa, M., Szrama, N. & Leuthardt, E. C. Decoding three-dimensional reaching movements using electrocorticographic signals in humans. J. Neural Eng. 13, 026021 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G. & Moran, D. W. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004).

    Article  PubMed  Google Scholar 

  63. Athalye, V. R., Carmena, J. M. & Costa, R. M. Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr. Opin. Neurobiol. 60, 145–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Cavallo, A. & Neumann, W. J. Dopaminergic reinforcement in the motor system: implications for Parkinson’s disease and deep brain stimulation. Eur. J. Neurosci. 59, 457–472 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Yttri, E. A. & Dudman, J. T. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature 533, 402–406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, M. C. K., David, S. V. & Gallant, J. L. Complete functional characterization of sensory neurons by system identification. Annu. Rev. Neurosci. 29, 477–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Jackson, A., Mavoori, J. & Fetz, E. E. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J. Neurophysiol. 97, 360–374 (2007).

    Article  PubMed  Google Scholar 

  68. Wang, N. X. R., Olson, J. D., Ojemann, J. G., Rao, R. P. N. & Brunton, B. W. Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations. Front. Hum. Neurosci. 10, 00165 (2016).

    Article  Google Scholar 

  69. Dixon, T. et al. Data from: Movement-responsive deep brain stimulation for Parkinson’s disease using a remotely optimized neural decoder. Dryad https://doi.org/10.5061/dryad.4xgxd25hw (2025).

  70. Dixon, T. dixon-2025-move-adbs. GitHub https://github.com/Weill-Neurohub-OPTiMaL/dixon-2025-move-adbs (2025).

  71. Dixon, T. rcssim. GitHub https://github.com/Weill-Neurohub-OPTiMaL/rcs-simulation (2025).

Download references

Acknowledgements

This work was supported by a Weill Neurohub Investigators Grant (J.L.G., J.A.H. and S.J.L.) and NIH UG3NS140730 award. The Weill Neurohub funding agency and NIH played no role in the study design, data collection, analysis, interpretation of the data or the writing of this paper. We would like to thank our participant, A. Perttula, for their involvement in the study and for supporting the research with their time for the experiments.

Author information

Authors and Affiliations

Authors

Contributions

T.C.D., J.A.H. and S.J.L. conceived the study and designed the research. T.C.D. and S.R. scheduled and oversaw the experiments. T.C.D. and D.L. designed and programmed the optimization pipeline and related tools. G.S., A.Z., T.F., R.B. and S.R. designed the data collection infrastructure. T.C.D., G.S., A.Z. and R.B. analysed the data. P.A.S. performed the implantation procedures. T.C.D. wrote the paper, and all other authors performed reviews. J.L.G., J.A.H. and S.J.L. acquired funding and supervised the study.

Corresponding author

Correspondence to Simon J. Little.

Ethics declarations

Competing interests

T.C.D. is a current employee of iota Biosciences, Inc., but was not an employee when the study was designed and initiated. S.R. is a current employee of Medtronic, Inc., but was not an employee when the study was designed and initiated. S.J.L. is a consultant for iota Biosciences, Inc. P.A.S. received fellowship programme financial support from Medtronic, Inc., and Boston Scientific, Inc., is a consultant for InBrain Neuroelectronics, Inc., and serves on the DSMB for Neuralink, Inc. All other authors declare no competing interests. No commercial entity played any role in experimental design or analysis/interpretation of study results, provided financial support for this study, or has any obvious means of gaining or losing financially through this publication. A patent application has been submitted for the movement-responsive aDBS and optimization approach (applicant, UCSF; application number, 65/531,506; inventors, T.C.D., S.J.L., J.A.H., D.L. and P.A.S.).

Peer review

Peer review information

Nature Biomedical Engineering thanks Dominique Durand, Wolf-Julian Neumann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Consort checklist.

Reporting Summary

Peer Review File

Supplementary Video 1

Real-time movement-responsive aDBS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, T.C., Strandquist, G., Zeng, A. et al. Movement-responsive deep brain stimulation for Parkinson’s disease using a remotely optimized neural decoder. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-025-01438-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing