Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Treatment of a severe vascular disease using a bespoke CRISPR–Cas9 base editor in mice

Abstract

Pathogenic missense mutations in the alpha actin isotype 2 (ACTA2) gene cause multisystemic smooth muscle dysfunction syndrome (MSMDS), a genetic vasculopathy that is associated with stroke, aortic dissection and death in childhood. Here we perform mutation-specific protein engineering to develop a bespoke CRISPR–Cas9 enzyme with enhanced on-target activity against the most common MSMDS-causative mutation ACTA2 R179H. To directly correct the R179H mutation, we screened dozens of configurations of base editors to develop a highly precise corrective A-to-G edit with minimal deleterious bystander editing that is otherwise prevalent when using wild-type SpCas9 base editors. We create a murine model of MSMDS that shows phenotypes consistent with human patients, including vasculopathy and premature death, to explore the in vivo therapeutic potential of this strategy. Delivery of the customized base editor via an engineered smooth muscle-tropic adeno-associated virus (AAV-PR) vector substantially prolongs survival and rescues systemic phenotypes across the lifespan of MSMDS mice, including in the vasculature, aorta and brain. Our results highlight how bespoke mutant-specific CRISPR–Cas9 enzymes can improve mutation correction with base editors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a bespoke ABE to correct ACTA2 R179H.
Fig. 2: Analysis of base-editing specificity to correct ACTA2 R179H.
Fig. 3: Development and characterization of an Acta2 R179H mouse model.
Fig. 4: In vivo correction of Acta2 R179H in MSMDS mice.
Fig. 5: Phenotypic changes in MSMDS mice following AAV-mediated delivery of ABEs.

Similar content being viewed by others

Data availability

Primary datasets are available in Supplementary Tables 1 and 57. Sequencing datasets are available with the NCBI Sequence Read Archive (SRA) under PRJNA1280096 (ref. 84). Plasmids from this study are available through Addgene.

References

  1. Cw, T. et al. Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147, e93–e621 (2023).

    Google Scholar 

  2. Ostrem, B. E. L., Godfrey, D., Caruso, P. A. & Musolino, P. L. Monogenic causes of cerebrovascular disease in childhood: a case series. Pediatr. Neurol. 149, 39–43 (2023).

    Article  PubMed  Google Scholar 

  3. Jankovic, M. et al. The genetic basis of strokes in pediatric populations and insight into new therapeutic options. Int. J. Mol. Sci. 23, 1601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grossi, A. et al. Targeted re-sequencing in pediatric and perinatal stroke. Eur. J. Med. Genet. 63, 104030 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Ilinca, A. et al. A stroke gene panel for whole-exome sequencing. Eur. J. Hum. Genet. 27, 317–324 (2019).

    Article  PubMed  Google Scholar 

  6. Munot, P. et al. A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations. Brain J. Neurol. 135, 2506–2514 (2012).

    Article  Google Scholar 

  7. Milewicz, D. M. et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am. J. Med. Genet. A. 152A, 2437–2443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Richer, J. et al. R179H mutation in ACTA2 expanding the phenotype to include prune-belly sequence and skin manifestations. Am. J. Med. Genet. A. 158A, 664–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Regalado, E. S. et al. Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations. Genet. Med. 20, 1206–1215 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lauer, A. et al. Cerebrovascular disease progression in patients with ACTA2 Arg179 pathogenic variants. Neurology 96, e538–e552 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  14. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alves, C. R. R. et al. Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nat. Biomed. Eng. 8, 118–131 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Bzhilyanskaya, V. et al. High-fidelity PAMless base editing of hematopoietic stem cells to treat chronic granulomatous disease. Sci. Transl. Med. 16, eadj6779 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Porto, E. M. & Komor, A. C. In the business of base editors: evolution from bench to bedside. PLoS Biol. 21, e3002071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Christie, K. A. & Kleinstiver, B. P. Making the cut with PAMless CRISPR-Cas enzymes. Trends Genet. 37, 1053–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chatterjee, P., Jakimo, N. & Jacobson, J. M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Sci. Adv. 4, eaau0766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, L. et al. PAM-flexible genome editing with an engineered chimeric Cas9. Nat. Commun. 14, 6175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lebek, S. et al. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science 379, 179–185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hibshman, G. N. et al. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat. Commun. 15, 3663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spencer, J. M. & Zhang, X. Deep mutational scanning of S. pyogenes Cas9 reveals important functional domains. Sci. Rep. 7, 16836 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anders, C., Bargsten, K. & Jinek, M. Structural plasticity of PAM recognition by engineered variants of the rna-guided endonuclease Cas9. Mol. Cell 61, 895–902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walton, R. T., Hsu, J. Y., Joung, J. K. & Kleinstiver, B. P. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat. Protoc. 16, 1511–1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, H. S., Jeong, Y. K., Hur, J. K., Kim, J.-S. & Bae, S. Adenine base editors catalyze cytosine conversions in human cells. Nat. Biotechnol. 37, 1145–1148 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480.e30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 42, 484–497 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Lino et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat. Commun. 9, 1009 (2018).

    Article  Google Scholar 

  44. Malhotra, R. et al. HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype. Nat. Genet. 51, 1580–1587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lino Cardenas, C. L. et al. HDAC9 complex inhibition improves smooth muscle-dependent stenotic vascular disease. JCI Insight 4, e124706 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chou, E. L. et al. Aortic cellular diversity and quantitative genome-wide association study trait prioritization through single-nuclear RNA sequencing of the aneurysmal human aorta. Arterioscler. Thromb. Vasc. Biol. 42, 1355–1374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Malinin, N. L. et al. Defining genome-wide CRISPR-Cas genome-editing nuclease activity with GUIDE-seq. Nat. Protoc. 16, 5592–5615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lazzarotto, C. R. et al. Population-scale cellular GUIDE-seq-2 and biochemical CHANGE-seq-R profiles reveal human genetic variation frequently affects Cas9 off-target activity. Preprint at bioRxiv https://doi.org/10.1101/2025.02.10.637517 (2025).

  51. Lazzarotto, C. R. et al. CHANGE-seq-BE enables simultaneously sensitive and unbiased in vitro profiling of base editor genome-wide activity. Preprint at bioRxiv https://doi.org/10.1101/2024.03.28.586621 (2024).

  52. Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xin, H.-B., Deng, K.-Y., Rishniw, M., Ji, G. & Kotlikoff, M. I. Smooth muscle expression of Cre recombinase and eGFP in transgenic mice. Physiol. Genomics 10, 211–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Z. et al. Vascular disease-causing mutation, smooth muscle α-actin R258C, dominantly suppresses functions of α-actin in human patient fibroblasts. Proc. Natl Acad. Sci. USA 114, E5569–E5578 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramirez, S. H. et al. An engineered adeno-associated virus capsid mediates efficient transduction of pericytes and smooth muscle cells of the brain vasculature. Hum. Gene Ther. 34, 682–696 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, Y. et al. Gene therapy in cardiovascular disease: recent advances and future directions in science: a science advisory from the American Heart Association. Circulation 150, e471–e480 (2024).

    PubMed  Google Scholar 

  59. Kleinstiver, B. & Walton, R. T. Crispr-Cas enzymes with enhanced on-target activity (2021).

  60. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR–Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, Y. et al. Synergistic engineering of CRISPR–Cas nucleases enables robust mammalian genome editing. Innovation 3, 100264 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McGaw, C. et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat. Commun. 13, 2833 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, H. et al. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell 14, 540–545 (2023).

    CAS  Google Scholar 

  66. Yan, H. et al. Assessing and engineering the IscB-ωRNA system for programmed genome editing. Nat. Chem. Biol. 20, 1617–1628 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, T. et al. An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity. Nat. Chem. Biol. 19, 1384–1393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiao, Q. et al. Engineered IscB-ωRNA system with expanded target range for base editing. Nat. Chem. Biol. 21, 100–108 (2025).

    Article  CAS  PubMed  Google Scholar 

  69. Silverstein, R. A. et al. Custom CRISPR-Cas9 PAM variants via scalable engineering and machine learning. Nature 643, 539–550 (2025).

    Article  CAS  PubMed  Google Scholar 

  70. Musunuru, K. et al. Patient-specific in vivo gene editing to treat a rare genetic disease. N. Engl. J. Med. 392, 2235–2243 (2025).

    Article  CAS  PubMed  Google Scholar 

  71. Lin, J. et al. Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model. Nat. Commun. 15, 5927 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Davis, J. R. et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat. Biomed. Eng. 6, 1272–1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, H. et al. Adenine base editing in vivo with a single adeno-associated virus vector. GEN Biotechnol. 1, 285–299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, Z. et al. An all-in-one AAV vector for cardiac-specific gene silencing by an adenine base editor. 2024.09.30.615742 Preprint at bioRxiv https://doi.org/10.1101/2024.09.30.615742 (2024).

  75. Tsuchida, C. A., Wasko, K. M., Hamilton, J. R. & Doudna, J. A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl Acad. Sci. USA 121, e2307796121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, J., Eygeris, Y., Ryals, R. C., Jozic, A. & Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2024).

    Article  CAS  PubMed  Google Scholar 

  77. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. DeRosa, S. et al. MCOLN1 gene therapy corrects neurologic dysfunction in the mouse model of mucolipidosis IV. Hum. Mol. Genet. 30, 908–922 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Lapinaite, A. et al. DNA capture by a CRISPR-Cas9-guided adenine base editor. Science 369, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, D., Kim, D., Lee, G., Cho, S.-I. & Kim, J.-S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Hanlon, K. S. et al. Selection of an efficient AAV vector for robust CNS transgene expression. Mol. Ther. Methods Clin. Dev. 15, 320–332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alves, C. R. R. et al. Treatment of a severe vascular disease using a bespoke CRISPR-Cas9 base editor in mice. NCBI https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1280096 (2025).

  85. Zettler, J., Schütz, V. & Mootz, H. D. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583, 909–914 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Charles A. King Trust Postdoctoral Research Fellowship, Bank of America, N.A., Co-Trustees (C.R.R.A.), a James L. and Elisabeth C. Gamble Endowed Fund for Neuroscience Research/Mass General Neuroscience Transformative Scholar Award (C.R.R.A.), a MGH Physician/Scientist Development Award (C.R.R.A.), a Ministry of Science and ICT and National Research Foundation of Korea Award (RS-2024-00359396, to K.R.), a Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship–Doctoral Postgraduate Scholarship–Doctoral (PGS D – 567791 to R.A.S.), an EMBO Long Term Fellowship (ALTF 750-2022, to J.F.d.S.), a Swiss National Science Foundation grant (P180777, to F.M.C.B.), St. Jude Children’s Research Hospital, American Lebanese Syrian Associated Charities (ALSAC), and National Institutes of Allergy and Infectious Diseases awards U01AI176470 and U01AI176471 (S.Q.T.), an MGH Howard M. Goodman Fellowship (to B.P.K.), the Kayden–Lambert MGH Research Scholar Award 2023-2028 (B.P.K.), a sponsored research agreement with Angea Biotherapeutics (R.M., D.Y.C., C.A.M., M.E.L., B.P.K. and P.L.M.) and National Institutes of Health grants K01NS134784 (C.R.R.A.), R01HL162928 (R.M.), K08NS112601 (D.Y.C.), R35GM142553 (L.H.C.), DC017117 (C.A.M.), DP2CA281401 (B.P.K.), P01HL142494 (B.P.K.) and R01NS125353 (to P.L.M., M.E.L. and B.P.K.). Some elements of Figs. 1a and 4c and Supplementary Fig. 35a were adapted from Servier Medical Art under a Creative Commons license CC BY 4.0.

Author information

Authors and Affiliations

Authors

Contributions

C.R.R.A., S.D. and V.K. contributed equally. L.L.H., L.R.F., H.E.S., C.E.S., P.K., S. McCarthy and C.L.L.C. contributed equally. M.E.L., B.P.K. and P.L.M. conceived of and designed the study. All authors designed, performed or supervised experiments and/or analysed data. C.R.R.A., C.L.L.C., L.L.H., H.E.S., P.K., L.R.F., S. McCarthy and S. Mitra performed cell culture experiments. C.R.R.A., S.D., V.K., C.L.L.C., L.L.H., H.E.S., C.E.S., P.K., L.R.F., C.E.F., S. McCarthy, S. Mitra and S.Y. performed molecular and biochemical experiments. S.D., V.K., C.L.L.C., C.E.S., C.E.F., T.I., J.L., R.R., K.R., R.M. and D.Y.C. conducted in vivo experiments in mice or performed histological or data analyses. C.R.R.A., L.L.H., H.E.S., L.R.F., S.Y. and J.F.d.S. performed plasmid cloning and lentivirus production. N.K. and R.A.S. performed HT-PAMDA experiments. D.d.l.C., J.X., H.L.G.-E. and C.A.M. performed titrations of AAV preparations and/or advised on AAV-related experiments. L.H.C. and F.M.C.B. performed protein purification. S.Q.T. and R.K.W. designed and performed CHANGE-seq-BE experiments. K.R., C.R.R.A., M.E.L. and B.P.K. wrote the paper with contributions or revisions from all authors.

Corresponding authors

Correspondence to Mark E. Lindsay, Benjamin P. Kleinstiver or Patricia L. Musolino.

Ethics declarations

Competing interests

C.L.L.C., R.M., C.A.M., D.Y.C., B.P.K., M.E.L. and P.L.M. are inventors on a patent application filed by MGB that describes the development of genome-editing technologies to treat MSMDS. C.R.R.A., R.A.S., J.F.d.S. and B.P.K. are inventors on additional patents or patent applications filed by MGB that describe genome engineering technologies. C.R.R.A. is a consultant for Biogen and Ilios Therapeutics. S.Q.T. is an inventor on a patent covering CHANGE-seq. S.Q.T. is a member of the scientific advisory board of Prime Medicine and Ensoma. R.M., D.Y.C., C.A.M., B.P.K., M.E.L. and P.L.M. received sponsored research support from Angea Biotherapeutics, a company developing gene therapies for vasculopathies. R.M. receives research funding from Amgen, serves as a consultant for Pharmacosmos, Myokardia/BMS, Renovacor, Epizon Pharma and Third Pole, and performs speaker bureaus through Vox Media, all of which are unrelated to the current work. C.A.M. has financial interests in Chameleon Biosciences, Skylark Bio and Sphere Gene Therapeutics, companies developing adeno-associated virus vector technologies for gene therapy applications; C.A.M. performs paid consulting work for all three companies. C.A.M.’s interests were reviewed and are managed by MGH and MGB in accordance with their conflict-of-interest policies. B.P.K. is a consultant for EcoR1 capital, Novartis Venture Fund, Foresite Labs and Jumble Therapeutics, and is on the scientific advisory boards of Acrigen Biosciences, Life Edit Therapeutics and Prime Medicine. B.P.K. has a financial interest in Prime Medicine, a company developing therapeutic CRISPR–Cas technologies for gene editing. B.P.K.’s interests were reviewed and are managed by MGH and MGB in accordance with their conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Colin Nichols and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–35 and References.

Reporting Summary

Peer Review File

Supplementary Table 1

Cas-OFFinder, GUIDE-seq2 and CHANGE-seq-BE results.

Supplementary Table 2

gRNA target sites.

Supplementary Table 3

Plasmids.

Supplementary Table 4

Oligonucleotides and probes.

Supplementary Table 5

rhAmpSeq results for gRNA A4.

Supplementary Table 6

rhAmpSeq results for gRNA A8.

Supplementary Table 7

Primary datasets.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.R.R., Das, S., Krishnan, V. et al. Treatment of a severe vascular disease using a bespoke CRISPR–Cas9 base editor in mice. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-025-01499-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing