Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway

Abstract

While natural terpenoid cyclases generate complex terpenoid structures via cationic mechanisms, alternative radical cyclization pathways are underexplored. The metal-catalysed H-atom transfer reaction (M-HAT) offers an attractive means for hydrofunctionalizing olefins, providing access to terpenoid-like structures. Artificial metalloenzymes offer a promising strategy for introducing M-HAT reactivity into a protein scaffold. Here we report our efforts towards engineering an artificial radical cyclase (ARCase), resulting from anchoring a biotinylated [Co(Schiff-base)] cofactor within an engineered chimeric streptavidin. After two rounds of directed evolution, a double mutant catalyses a radical cyclization to afford bicyclic products with a cis-5-6-fused ring structure and up to 97% enantiomeric excess. The involvement of a histidine ligation to the Co cofactor is confirmed by crystallography. A time course experiment reveals a cascade reaction catalysed by the ARCase, combining a radical cyclization with a conjugate reduction. The ARCase exhibits tolerance towards variations in the dienone substrate, highlighting its potential to access terpenoid scaffolds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An ARCase designed for the asymmetric construction of terpenoid architectures.
Fig. 2: Engineering a chimeric loop to shield the active site of the ARCase.
Fig. 3: Genetic optimization of ARCase performance by protein engineering using [Co(Biot-en-tBu2-Salphen)] 4 as cofactor.
Fig. 4: Structural analysis of the evolved ARCase.
Fig. 5: Application of ARCases towards construction of terpenoid-like structures.

Similar content being viewed by others

Data availability

The data that support the findings in this study are available within this Article and its Supplementary Information and Supplementary Data. Crystallographic data for the ARCase structure of [Co(Biot-en-tBu2-Salphen)] 4 ‧ chSav*_α16 S122V-K131H reported in this article have been deposited at Protein Data Bank under the code 8QEX. Source data are provided with this paper.

References

  1. Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones (Wiley-VCH, 2006).

  2. Le Bideau, F., Kousara, M., Chen, L., Wei, L. & Dumas, F. Tricyclic sesquiterpenes from marine origin. Chem. Rev. 117, 6110–6159 (2017).

    Article  PubMed  Google Scholar 

  3. Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  5. Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ye, Y. X. et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination. Nat. Chem. 15, 206–212 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rui, J. Y. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)–H azidation. Science 376, 869–874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, X. Q. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Nakano, Y. et al. Photoenzymatic hydrogenation of heteroaromatic olefins using ‘ene’-reductases with photoredox catalysts. Angew. Chem. Int. Ed. 59, 10484–10488 (2020).

    Article  CAS  Google Scholar 

  12. Sandoval, B. A. et al. Photoenzymatic reductions enabled by direct excitation of flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 143, 1735–1739 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukaiyama, T. et al. Oxidation–reduction hydration of olefins with molecular-oxygen and 2-propanol catalyzed by bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 449–452 (1989).

    Article  Google Scholar 

  15. Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa, H. et al. Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J. Am. Chem. Soc. 131, 4904–4916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, X. S. & Herzon, S. B. Intermolecular hydropyridylation of unactivated alkenes. J. Am. Chem. Soc. 138, 8718–8721 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Choi, J. W., Tang, L. H. & Norton, J. R. Kinetics of hydrogen atom transfer from (η5-C5H5)Cr(CO)3H to various olefins: influence of olefin structure. J. Am. Chem. Soc. 129, 234–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, D., Rahaman, S. M. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Discolo, C. A., Touney, E. E. & Pronin, S. V. Catalytic asymmetric radical–polar crossover hydroalkoxylation. J. Am. Chem. Soc. 141, 17527–17532 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Ebisawa, K. et al. Catalyst- and silane-controlled enantioselective hydrofunctionalization of alkenes by cobalt-catalyzed hydrogen atom transfer and radical–polar crossover. J. Am. Chem. Soc. 142, 13481–13490 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Qin, T. et al. Cobalt-catalyzed radical hydroamination of alkenes with N-fluorobenzenesulfonimides. Angew. Chem. Int. Ed. 60, 25949–25957 (2021).

    Article  CAS  Google Scholar 

  25. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Stappen, C. V. et al. Designing artificial metalloenzymes by tuning of the environment beyond the primary coordination sphere. Chem. Rev. 122, 11974–12045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

    Article  CAS  Google Scholar 

  28. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Studer, S. et al. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 362, 1285–1288 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Natoli, S. N. & Hartwig, J. F. Noble-metal substitution in hemoproteins: an emerging strategy for abiological catalysis. Acc. Chem. Res. 52, 326–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Mirts, E. N., Petrik, I. D., Hosseinzadeh, P., Nilges, M. J. & Lu, Y. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science 361, 1098–1101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oohora, K., Onoda, A. & Hayashi, T. Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Acc. Chem. Res. 52, 945–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Roelfes, G. LmrR: a privileged scaffold for artificial metalloenzymes. Acc. Chem. Res. 52, 545–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heinisch, T. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: challenges and opportunities. Acc. Chem. Res. 49, 1711–1721 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Shu, T. & Cossy, J. Asymmetric desymmetrization of alkene-, alkyne- and allene-tethered cyclohexadienones using transition metal catalysis. Chem. Soc. Rev. 50, 658–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. 22, 753–764 (1983).

    Article  Google Scholar 

  38. Salahi, F., Yao, C., Norton, J. R. & Snyder, S. A. The synthesis of diverse terpene architectures from phenols. Nat. Synth. 1, 313–321 (2022).

    Article  Google Scholar 

  39. Christoffel, F. et al. Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nat. Catal. 4, 643–653 (2021).

    Article  CAS  Google Scholar 

  40. Pellizzoni, M. M. et al. Chimeric streptavidins as host proteins for artificial metalloenzymes. ACS Catal. 8, 1476–1484 (2018).

    Article  CAS  Google Scholar 

  41. Grimm, A. R. et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis. ACS Catal. 8, 3358–3364 (2018).

    Article  CAS  Google Scholar 

  42. Eiben, C. B. et al. Increased diels-alderase activity through backbone remodeling guided by Foldit players. Nat. Biotechnol. 30, 190–192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Demarteau, J., Debuigne, A. & Detrembleur, C. Organocobalt complexes as sources of carbon-centered radicals for organic and polymer chemistries. Chem. Rev. 119, 6906–6955 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Dodani, S. C. et al. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 8, 419–425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loving, G. & Imperiali, B. Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions. Bioconjug. Chem. 20, 2133–2141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 343, 5–26 (2001).

    Article  CAS  Google Scholar 

  47. Rodriguez, A. D., Ramirez, C. & Shi, Y. P. The cumbiasins, structurally novel diterpenes possessing intricate carbocyclic skeletons from the West Indian sea whip Pseudopterogorgia elisabethae (Bayer). J. Org. Chem. 65, 6682–6687 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Kamo, S. et al. Synthetic and biological studies of juglorubin and related naphthoquinones. J. Org. Chem. 84, 13957–13966 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Lu, Z. et al. Total synthesis of aplysiasecosterol A. J. Am. Chem. Soc. 140, 9211–9218 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lu, H. J. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Lang, K., Hu, Y., Cindy Lee, W.-C. & Zhang, X. P. Combined radical and ionic approach for the enantioselective synthesis of β-functionalized amines from alcohols. Nat. Synth. 1, 548–557 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vlasie, M., Chowdhury, S. & Banerjee, R. Importance of the histidine ligand to coenzyme B in the reaction catalyzed by methylmalonyl-CoA mutase. J. Biol. Chem. 277, 18523–18527 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.R.W. thanks the NCCR Catalysis (grant number 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation. Additional funding was provided by the NCCR Molecular Systems Engineering (grant number 200021_178760). X.Z. thanks the SIOC postdoc fellowship for the financial support. R.T. thanks the Naito Foundation for financial support. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland, for provision of synchrotron radiation beamtime at beamline X06SA of the Swiss Light Source.

Author information

Authors and Affiliations

Authors

Contributions

T.R.W., X.Z. and D.C. conceived and designed the study. X.Z. contributed to the synthesis of the substrates, products and complexes. D.C. contributed to the mutagenesis and protein expression and protein purification and protein mass. D.C. and X.Z. performed the catalytic and time course experiment, designed the screening workflow and recorded the data. T.R.W., X.Z. and D.C. analysed the data. R.P.J., T.M. and D.C. contributed to the crystallization and crystallographic structural analysis. A.A.V., B.E.C., A.S. and T.R.W. contributed to the collaboration on the computational design of chimeric streptavidin. R.T. contributed to the molecular modelling and QM/MM calculation. Z.Z. offered the molecular biology instructions. D.A.G. offered synthetic suggestions. A.L. provided critical insight regarding the M-HAT reaction. A.S. established the Chim_Sav library workflow and associated molecular biology methods. T.R.W., X.Z. and D.C. wrote the paper, which was further supplemented through contributions from R.P.J., R.T. and A.A.V. All authors have given approval to the final version of the paper.

Corresponding authors

Correspondence to Bruno E. Correia or Thomas R. Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jean-Pierre Mahy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Asymmetric radical cyclization of dienone 1 and kinetic resolution of the cyclized enone 2 to the corresponding ketone 8 at 10 °C.

a) [Co(Biot-en-tBu2-Salphen)] 4 · chSav*_α16 S122V-K131H catalyzed cascade reaction consisting of a radical cyclization followed by a conjugate reduction. b) Time-course monitoring at 10 °C of ARCase progress, product-distribution (top) and enantioselectivity (bottom).

Source data

Extended Data Table 1 Kinetic parameters for the cascade resulting from the radical cyclization followed by the conjugate reduction

Supplementary information

Supplementary Information

Supplementary Tables 1–20 and Figs. 1–86.

Reporting Summary

Supplementary Data 1

Coordinates for the ARCase [Co(Biot-en-tBu2-Salphen)] 4 ‧ Sav*_α16 S122V-K131H.

Source data

Source Data Table 1

Source data for Table 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Extended Data Fig./Table 1

Source data for Extended Data Fig. 1 in the main text.

Source Data Extended Data Fig./Table 2

Source data for Extended Data Table 1 in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhang, X., Vorobieva, A.A. et al. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat. Chem. 16, 1656–1664 (2024). https://doi.org/10.1038/s41557-024-01562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01562-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing