Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation

An Author Correction to this article was published on 17 March 2025

This article has been updated

Abstract

Two of nature’s recurring binding motifs in metalloproteins are the CxxxCxxC motif in radical SAM enzymes and the 2-His-1-carboxylate motif found both in zincins and α-ketoglutarate and non-haem iron enzymes. Here we show the confluence of these two domains in a single post-translational modifying enzyme containing an N-terminal radical S-adenosylmethionine domain fused to a C-terminal 2-His-1-carboxylate (HExxH) domain. The radical SAM domain catalyses three-residue cyclophane formation and is the signature modification of triceptides, a class of ribosomally synthesized and post-translationally modified peptides. The HExxH domain is a defining feature of zinc metalloproteases. Yet the HExxH motif-containing domain studied here catalyses β-hydroxylation and is an α-ketoglutarate non-haem iron enzyme. We determined the crystal structure for this HExxH protein at 2.8 Å, unveiling a distinct structural fold, thus expanding the family of α-ketoglutarate non-haem iron enzymes with a class that we propose to name αKG-HExxH. αKG-HExxH proteins represent a unique family of ribosomally synthesized and post-translationally modified peptide modifying enzymes that can furnish opportunities for genome mining, synthetic biology and enzymology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and mechanism of a zincin metallopeptidase and an αKG/Fe-dependent oxygenase.
Fig. 2: Fused rSAM αKG-HExxH proteins involved in the biosynthesis of triceptides.
Fig. 3: Functional validation of MscBH and SjiBH, FxsBH family rSAM αKG-HExxH proteins.
Fig. 4: Functional validation of ChlBH.
Fig. 5: In vitro assays with MscH, SjiH and ChlH.
Fig. 6: Crystal structure of ChlH and proposed active site.

Similar content being viewed by others

Data availability

The detailed procedures required to duplicate this work are available in Supplementary Information along with full LC–MS and NMR spectra where appropriate. The ChlH atomic coordinates and structure factors are deposited at the Protein Data Bank with ID code 8PP1. Any additional data or unique materials (through a materials transfer agreement) are available from the corresponding authors on reasonable request.

Code availability

The R script used for analysis of αKG-HExxH domain proteins is available at https://github.com/SuzeMa/2022_modHExxH

Change history

References

  1. Riordan, J. F. The role of metals in enzyme activity. Ann. Clin. Lab. Sci. 7, 119–129 (1977).

    CAS  PubMed  Google Scholar 

  2. Ragsdale, S. W. Metals and their scaffolds to promote difficult enzymatic reactions. Chem. Rev. 106, 3317–3337 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Nicolet, Y. Structure–function relationships of radical SAM enzymes. Nat. Catal. 3, 337–350 (2020).

    Article  CAS  Google Scholar 

  4. Broderick, J. B., Broderick, W. E. & Hoffman, B. M. Radical SAM enzymes: nature’s choice for radical reactions. FEBS Lett. 597, 92–101 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Imlay, J. A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073–1082 (2006).

    Article  PubMed  Google Scholar 

  6. Grell, T. A. J., Goldman, P. J. & Drennan, C. L. SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290, 3964–3971 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Mendauletova, A., Kostenko, A., Lien, Y. & Latham, J. How a subfamily of radical S-adenosylmethionine enzymes became a mainstay of ribosomally synthesized and post-translationally modified peptide discovery. ACS Bio. Med. Chem. Au. 2, 53–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, Q. & Morinaka, B. I. Accessing and exploring the unusual chemistry by radical SAM-RiPP enzymes. Curr. Opin Chem. Biol. 81, 102483 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, K. A., Bushin, L. B. & Seyedsayamdost, M. R. RaS-RiPPs in Streptococci and the human microbiome. ACS Bio. Med. Chem. Au. 2, 328–339 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahanta, N., Hudson, G. A. & Mitchell, D. A. Radical S-adenosylmethionine enzymes involved in RiPP biosynthesis. Biochemistry 56, 5229–5244 (2017).

  11. Benjdia, A. & Berteau, O. Radical SAM enzymes and ribosomally‐synthesized and post‐translationally modified peptides: a growing importance in the microbiomes. Front. Chem. 9, 678068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hooper, N. M. Families of zinc metalloproteases. FEBS Lett. 354, 1–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Lipscomb, W. N. & Sträter, N. Recent advances in zinc enzymology. Chem. Rev. 96, 2375–2434 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Spyroulias, G. A., Galanis, A. S., Pairas, G., Manessi-Zoupa, E. & Cordopatis, P. Structural features of angiotensin-I converting enzyme catalytic sites: conformational studies in solution, homology models and comparison with other zinc metallopeptidases. Curr. Top. Med. Chem. 4, 403–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, B. P. & Dupourque, D. Three-dimensional structure of thermolysin. Nat. New Biol. 238, 37–41 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Gao, S.-S., Naowarojna, N., Cheng, R., Liu, X. & Liu, P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat. Prod. Rep. 35, 792–837 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loenarz, C. & Schofield, C. J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol. 4, 152–156 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Hausinger, R. P. FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 21–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Schaeffer, R. D., Kinch, L. N., Liao, Y. & Grishin, N. V. Classification of proteins with shared motifs and internal repeats in the ECOD database. Protein Sci. 25, 1188–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aik, W., McDonough, M. A., Thalhammer, A., Chowdhury, R. & Schofield, C. J. Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Curr. Opin. Struct. Biol. 22, 691–700 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Clifton, I. J. et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J. Inorg. Biochem. 100, 644–669 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Martinez, S. & Hausinger, R. P. Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20702–20711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sugiyama, R. et al. The biosynthetic landscape of triceptides reveals radical SAM enzymes that catalyze cyclophane formation on Tyr- and His-containing motifs. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c00521 (2022).

    Article  PubMed  Google Scholar 

  24. Clark, K. A. & Seyedsayamdost, M. R. Bioinformatic atlas of radical SAM enzyme-modified RiPP natural products reveals an isoleucine–tryptophan crosslink. J. Am. Chem. Soc. 144, 17876–17888 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen, T. Q. N. et al. Post-translational formation of strained cyclophanes in bacteria. Nat. Chem. 12, 1042–1053 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Phan, C.-S. & Morinaka, B. I. A prevalent group of actinobacterial radical SAM/SPASM maturases involved in triceptide biosynthesis. ACS Chem. Biol. 17, 3284–3289 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Phan, C.-S. & Morinaka, B. I. Bacterial cyclophane-containing RiPPs from radical SAM enzymes. Nat. Prod. Rep. 41, 708–720 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Suarez, A. F. L. et al. Functional and promiscuity studies of three-residue cyclophane forming enzymes show nonnative C–C cross-linked products and leader-dependent cyclization. ACS Chem. Biol. 19, 774–783 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Phan, C.-S. et al. Substrate promiscuity of the triceptide maturase XncB leads to incorporation of various amino acids and detection of oxygenated products. ACS Chem. Biol. 19, 855–860 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Purushothaman, M. et al. The triceptide maturase OscB catalyzes uniform cyclophane topology and accepts diverse Gly-rich precursor peptides. ACS Chem. Biol. 19, 1229–1236 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, S. et al. Post-translational formation of aminomalonate by a promiscuous peptide-modifying radical SAM enzyme. Angew. Chem. Int. Ed. 60, 19957–19964 (2021).

    Article  CAS  Google Scholar 

  34. Ma, S. et al. A gene-encoded aldehyde tag repurposed from RiPP cyclophane-forming pathway. Bioorg. Med. Chem. Lett. 101, 129653 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Bhushan, R. & Bruckner, H. Marfey’s reagent for chiral amino acid analysis: A review. Amino Acids 27, 231–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Doyon, T. J. et al. Scalable and selective β-hydroxy-α-amino acid synthesis catalyzed by promiscuous l-threonine transaldolase ObiH. ChemBioChem 23, e202100577 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Pan, J. et al. Evidence for modulation of oxygen rebound rate in control of outcome by iron(II)- and 2-oxoglutarate-dependent oxygenases. J. Am. Chem. Soc. 141, 15153–15165 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez, S. & Hausinger, R. P. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 55, 5989–5999 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Martinez, S. & Hausinger, R. P. Correction to biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 56, 3158 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Holm, L., Laiho, A., Törönen, P. & Salgado, M. DALI shines a light on remote homologs: one hundred discoveries. Protein Sci. 32, e4519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trame, C. B. et al. New mini-zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily. BMC Bioinf. 15, 1 (2014).

    Article  Google Scholar 

  42. Chwastyk, M., Jaskolski, M. & Cieplak, M. The volume of cavities in proteins and virus capsids. Proteins 84, 1275–1286 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Chojnowski, G. et al. findMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. IUCrJ 9, 86–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 87, 585–620 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Perez-Riba, A. & Itzhaki, L. S. The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition. Curr. Opin. Struct. Biol. 54, 43–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen, H. et al. Characterization of a radical SAM oxygenase for the ether crosslinking in darobactin biosynthesis. J. Am. Chem. Soc. 144 https://doi.org/10.1021/jacs.2c05565 (2022).

  47. Ma, S. et al. Substrate-controlled catalysis in the ether cross-link-forming radical SAM enzymes. J. Am. Chem. Soc. 145, 22945–22953 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Kaur, G., Burroughs, A. M., Iyer, L. M. & Aravind, L. Highly-regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. eLife 9, e52696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. English, A. C., Done, S. H., Caves, L. S., Groom, C. R. & Hubbard, R. E. Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol. Proteins 37, 628–640 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. O’Brien, J. R., Schuller, D. J., Yang, V. S., Dillard, B. D. & Lanzilotta, W. N. Substrate-induced conformational changes in Escherichia coli taurine/alpha-ketoglutarate dioxygenase and insight into the oligomeric structure. Biochemistry 42, 5547–5554 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program (2018Y F A0900402) to Q.Z., the Innovative research team of high-level local universities in Shanghai and a key laboratory programme of the Education Commission of Shanghai Municipality (ZDSYS14005) to Q.Z., the West Light Foundation of The Chinese Academy of Sciences (xbzg-zdsys-202105) to Q.Z., The National Natural Science Foundation of China (21921003 and U22A20451 to Q.Z. and 223B2701 to S.M.), The Japan Society for Promotion of Science to Y.M. and R.S., The Naito Foundation to Y.M., The Human Frontier Science Program to R.S. and the Ministry of Education Singapore (A-0004623-00-00, A-0008495-00-00 and A-8000449-00-00) to B.I.M. E.D.L.M. and P.A. thank J.C. Fontecilla-Camps for helpful discussions. P.A. appreciates the help from the staff of the computing facility provided by the Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA/DRF/GIPSI), Saclay and CCRT, Bruyères-le-Châtel. Part of this work was supported by the French National Research Agency (ANR-20-CE44-0005) and used the platforms of the Grenoble Instruct-ERIC center (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology, which is supported by FRISBI (ANR-10-INBS-05-02) and GRAL and financed within the Université Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). The authors thank S. Matsunaga (The University of Tokyo) for providing theonellamides as a standard of l-erythro β-OH-Asp. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we would like to thank Christoph Mueller-Dieckmann and Philippe Carpentier for assistance in using beamline ID30B.

Author information

Authors and Affiliations

Authors

Contributions

B.I.M, Q.Z. and Y.N. designed the research. Y.M., Y.W.T., R.S. and G.G. performed functional and biochemical studies for MscBH, ChlBH and SamBH. S.M., H.L., H.C. and X.J. performed the functional and biochemical studies for SjiBH and SgaBH. E.D.L.M. and A.U. performed crystallography studies for ChlH. P.A. performed in silico modelling. Y.M., S.M., E.D.L.M., Y.N., Q.Z. and B.I.M. wrote the manuscript. All authors analysed the data, discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yvain Nicolet, Qi Zhang or Brandon I. Morinaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Chemistry thanks Gong-Li Tang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The hidden sequence space of αKG-HExxH family in Nature.

a, Summary of the protein families that are fused to αKG-HExxH family protein, including standalone αKG-HExxH proteins, and αKG-HExxH proteins that are fused with an rSAM, tetratricopeptide repeat (TPR) or other protein families. b, Unrooted maximum-likelihood phylogenetic tree of the αKG-HExxH domains excised from their native protein sequence. The phylum information and the presence (+) or absence (−) of the HExxH and PWRxxxRP motif are annotated on the tree.

Supplementary information

Supplementary Information

Materials and equipment, and Supplementary methods, Figs. 1–63 and Tables 1–10.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morishita, Y., Ma, S., De La Mora, E. et al. Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation. Nat. Chem. 16, 1882–1893 (2024). https://doi.org/10.1038/s41557-024-01596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01596-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing