Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes

Abstract

Halides of the family Li3MX6 (M = Y, In, Sc and so on, X = halogen) are emerging solid electrolyte materials for all-solid-state Li-ion batteries. They show greater chemical stability and wider electrochemical stability windows than existing sulfide solid electrolytes, but have lower room-temperature ionic conductivities. Here we report the discovery that the superionic transition in Li3YCl6 is triggered by the collective motion of anions, as evidenced by synchrotron X-ray and neutron scattering characterizations and ab initio molecular dynamics simulations. Based on this finding, we used a rational design strategy to lower the transition temperature and thus improve the room-temperature ionic conductivity of this family of compounds. We accordingly synthesized Li3YClxBr6−x and Li3GdCl3Br3 and achieved very high room-temperature conductivities of 6.1 and 11 mS cm−1 for Li3YCl4.5Br1.5 and Li3GdCl3Br3, respectively. These findings open new routes to the design of room-temperature superionic conductors for high-performance solid batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of LYC.
Fig. 2: Ionic conductivity and Li diffusion paths of LYC visualized by FDMs generated from ND patterns at various temperatures.
Fig. 3: Collective motion of anion ligands and its influence on Li-ion diffusion behaviour.
Fig. 4: AIMD simulations of LYC at different temperatures.
Fig. 5: Activating 2D Li+ diffusion pathways within the ab plane in Li3YCl6−xBrx.
Fig. 6: Design of Li3GdCl3Br3 as a solid-state electrolyte.

Similar content being viewed by others

Data availability

All of the data that support the findings of this work are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  2. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  3. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  4. Zhao, N. et al. Solid garnet batteries. Joule 3, 1190–1199 (2019).

    Article  CAS  Google Scholar 

  5. Zhang, B., Lin, Z., Dong, H., Wang, L.-W. & Pan, F. Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping. J. Mater. Chem. A 8, 342–348 (2020).

    Article  CAS  Google Scholar 

  6. Liu, Z., Qin, X., Xu, H. & Chen, G. One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries. J. Power Sources 293, 562–569 (2015).

    Article  CAS  Google Scholar 

  7. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Yamane, H. et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007).

    Article  CAS  Google Scholar 

  9. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  10. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Park, K. H. et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018).

    Article  Google Scholar 

  12. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article  Google Scholar 

  13. Li, X. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. 58, 16427–16432 (2019).

    Article  CAS  Google Scholar 

  14. Liang, J. et al. Site-occupation-tuned superionic LixScCl3+xhalide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwak, H. et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 14, 2459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwak, H. et al. Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+xZr1−xMxCl6 (M = In, Sc). Chem. Eng. J. 437, 135413 (2022).

    Article  CAS  Google Scholar 

  18. Li, F. et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes. Nano Lett. 22, 2461–2469 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Helm, B. et al. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3−xIn1−xZrxCl6 (0 ≤ x ≤ 0.5). Chem. Mater. 33, 4773–4782 (2021).

    Article  CAS  Google Scholar 

  20. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019).

    Article  CAS  Google Scholar 

  21. Liu, Z. et al. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary. ACS Energy Lett. 6, 298–304 (2021).

    Article  CAS  Google Scholar 

  22. Steiner, H. J. & Lutz, H. D. Neue schnelle Ionenleiter vom Typ MI3MIIICl6 (MI = Li, Na, Ag; MIII = In, Y). Z. Anorg. Allg. Chem. 613, 26–30 (1992).

    Article  CAS  Google Scholar 

  23. Ito, H. et al. Kinetically stabilized cation arrangement in Li3YCl6 superionic conductor during solid-state reaction. Adv. Sci. 8, 2101413 (2021).

    Article  CAS  Google Scholar 

  24. Yu, S. et al. Design of a trigonal halide superionic conductor by regulating cation order-disorder. Science 382, 573–579 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Schlem, R. et al. Mechanochemical synthesis: a tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Adv. Energy Materials 10, 1903719 (2020).

    Article  CAS  Google Scholar 

  26. Qi, J. et al. Bridging the gap between simulated and experimental ionic conductivities in lithium superionic conductors. Mater. Today Phys. 21, 100463 (2021).

    Article  CAS  Google Scholar 

  27. Wang, S., Liu, Y. & Mo, Y. Frustration in super-ionic conductors unraveled by the density of atomistic states. Angew. Chem. Int. Ed. 62, e202215544 (2023).

    Article  CAS  Google Scholar 

  28. Sebti, E. et al. Stacking faults assist lithium-ion conduction in a halide-based superionic conductor. J. Am. Chem. Soc. 144, 5795–5811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bohnsack, A. et al. Ternäre Halogenide vom Typ A3MX6. VI [1]. Ternäre Chloride der Selten-Erd-Elemente mit Lithium, Li3MCl6 (M = Tb−Lu, Y, Sc): Synthese, Kristallstrukturen und Ionenbewegung. Z. Anorg. Allg. Chem. 623, 1067–1073 (1997).

    Article  CAS  Google Scholar 

  30. Gupta, M. K. et al. Fast Na diffusion and anharmonic phonon dynamics in superionic Na3PS4. Energy Environ. Sci. 14, 6554–6563 (2021).

    Article  CAS  Google Scholar 

  31. Muy, S., Schlem, R., Shao-Horn, Y. & Zeier, W. G. Phonon–ion interactions: designing ion mobility based on lattice dynamics. Adv. Energy Mater. 11, 2002787 (2021).

    Article  CAS  Google Scholar 

  32. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  33. Neuefeind, J., Feygenson, M., Carruth, J., Hoffmann, R. & Chipley, K. K. The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS. Nucl. Instrum. Methods Phys. Res. B 287, 68–75 (2012).

    Article  CAS  Google Scholar 

  34. Coelho, A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

    Article  CAS  Google Scholar 

  35. Ikeda, S. & Carpenter, J. M. Wide-energy-range, high-resolution measurements of neutron pulse shapes of polyethylene moderators. Nucl. Instrum. Methods Phys. Res. A 239, 536–544 (1985).

    Article  Google Scholar 

  36. Larson, A. C. & Von Dreele, R. B. GSAS, Report lAUR 86–748 (Los Alamos National Laboratory, 1994).

  37. Zhang, Y., Liu, J. & Tucker, M. G. Lorentz factor for time-of-flight neutron Bragg and total scattering. Acta Crystallogr. A 79, 20–24 (2023).

    Article  CAS  Google Scholar 

  38. Liu, J. et al. Anionic redox induced anomalous structural transition in Ni-rich cathodes. Energy Environ. Sci. 14, 6441–6454 (2021).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Jain, A. et al. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  43. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  44. He, X., Zhu, Y. & Epstein, A. et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

Z.L. and H.C. acknowledge the financial support from the US National Science Foundation (grant nos. 1706723 and 2108688) and the faculty start-up fund of Georgia Tech. The facilities at the Advanced Photon Source at Argonne National Laboratory were made available through the General User Program, supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). Also used in this study was the 28ID-2 XPD beamline of the National Synchrotron Light Source II, a US DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory (contract no. DE-SC0012704). A portion of this research was carried out at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We thank J. Bai and W. Xu for help with the synchrotron experiments. Z.L. and H.C. thank M. McDowell for help with the low-temperature EIS measurements. M.L. and S.X. acknowledge the support of the National Science Foundation (grant no. NSF-CMMI-1554393). Y.M. acknowledges funding from the US National Science Foundation (award no. 2004837) and access to the computational facilities at the University of Maryland.

Author information

Authors and Affiliations

Contributions

Z.L. and H.C. conceived the idea and designed the experiments. Z.L. conducted the synthesis, electrochemical tests and some of the characterizations. P.-H.C. and J.L. performed the ND characterizations and analyses. S.W. performed the computer simulations under the supervision of Y.M. S.S. and S.C. contributed to the processing of the materials. M.L., Z.L. and S.X. performed mechanical property measurements and analyses. Z.L., H.C., J.L. and S.W. wrote the paper. All authors reviewed and revised the paper.

Corresponding authors

Correspondence to Jue Liu, Yifei Mo or Hailong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Tables 1–16.

Supplementary Video 1

Rocking motion from 100 to 400 K.

Supplementary Video 2

Rocking–breathing motion transition from 400 to 500 K.

Supplementary Video 3

BN1 change under rocking motion from 100 to 400 K.

Supplementary Video 4

BN1 change from rocking motion at 400 K to breathing motion at 500 K.

Supplementary Video 5

BN3 change under rocking motion from 100 to 400 K.

Supplementary Video 6

BN3 change from rocking motion at 400 K to breathing motion at 500 K.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Chien, PH., Wang, S. et al. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes. Nat. Chem. 16, 1584–1591 (2024). https://doi.org/10.1038/s41557-024-01634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01634-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing