Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-stage and multi-colour liquid crystal reflections using a chiral triptycene photoswitchable dopant

Abstract

The photomodulation of the helical pitch of cholesteric liquid crystals results in dynamic and coloured canvases that can potentially be used in applications ranging from energy-efficient displays to colour filters, anti-counterfeiting tags and liquid crystal (LC) lasers. Here we report on the analysis of a series of photoswitchable chiral dopants that combine the large geometrical change and bistability of hydrazone switches with the efficient helical pitch induction of the chiral motif, triptycene. We elucidate the effects that conformational flexibility, dispersion forces and π–π interactions have on the chirality transfer ability of the dopant. We then use the irradiation time with visible light (442 nm) combined with a simple digital light processing microscope projection set-up to draw numerous stable multi-coloured images on an LC canvas, showcasing the fine control this dopant yields over the LC assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photochromic triptycene chiral dopants, their synthesis, characterization and photoisomerization studies.
Fig. 2: Photochemical response and fatigue resistance of 5CB doped (S, S)-1: polarized optical micrographs, transmittance spectra and RGB images.
Fig. 3: Transmittance spectra and DLP patterning of 5CB doped (S, S)-1 for multi-colour image generation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Li, Q. Intelligent Stimuli-Responsive Materials: from Well-Defined Nanostructures to Applications (Wiley, 2013).

    Google Scholar 

  2. Goulet‐Hanssens, A., Eisenreich, F. & Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 32, 1905966 (2020).

    Google Scholar 

  3. Wang, Y. & Li, Q. Light‐driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012).

    CAS  PubMed  Google Scholar 

  4. Kim, Y. & Tamaoki, N. Photoresponsive chiral dopants: light-driven helicity manipulation in cholesteric liquid crystals for optical and mechanical functions. ChemPhotoChem. 3, 284–303 (2019).

    CAS  Google Scholar 

  5. Zheng, Z. et al.Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 531, 352–356 (2016).

    PubMed  Google Scholar 

  6. Bisoyi, H. K. & Li, Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem. Rev. 116, 15089–15166 (2016).

    CAS  PubMed  Google Scholar 

  7. Bisoyi, H. K. & Li, Q. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev. 122, 4887–4926 (2021).

    PubMed  Google Scholar 

  8. Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    CAS  Google Scholar 

  9. Chilaya, G. S. Light-controlled change in the helical pitch and broadband tunable cholesteric liquid-crystal lasers. Crystallogr. Rep. 51, S108–S118 (2006).

    CAS  Google Scholar 

  10. Palffy-Muhoray, P. Liquid crystals new designs in cholesteric colour. Nature 391, 745–746 (1998).

    CAS  Google Scholar 

  11. Sagisaka, T. & Yokoyama, Y. Reversible control of the pitch of cholesteric liquid crystals by photochromism of chiral fulgide derivatives. Bull. Chem. Soc. Jpn 73, 191–196 (2000).

    CAS  Google Scholar 

  12. Janicki, S. Z. & Schuster, G. B. A liquid crystal opto-optical switch: nondestructive information retrieval based on a photochromic fulgide as trigger. J. Am. Chem. Soc. 117, 8524–8527 (1995).

    CAS  Google Scholar 

  13. White, T. J. et al. Optically reconfigurable color change in chiral nematic liquid crystals based on indolylfulgide chiral dopants. J. Mater. Chem. 22, 5751–5757 (2012).

    CAS  Google Scholar 

  14. Kurosaki, Y., Sagisaka, T., Matsushima, T., Ubukata, T. & Yokoyama, Y. Chiral, thermally irreversible and quasi‐stealth photochromic dopant to control selective reflection wavelength of cholesteric liquid crystal. ChemPhysChem 21, 1375–1383 (2020).

    CAS  PubMed  Google Scholar 

  15. Bosco, A. et al. Photoinduced reorganization of motor-doped chiral liquid crystals: bridging molecular isomerization and texture rotation. J. Am. Chem. Soc. 130, 14615–14624 (2008).

    CAS  PubMed  Google Scholar 

  16. Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  PubMed  Google Scholar 

  17. van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

    PubMed  PubMed Central  Google Scholar 

  18. Ryabchun, A. et al. Helix inversion controlled by molecular motors in multistate liquid crystals. Adv. Mater. 32, 2004420 (2020).

    Google Scholar 

  19. Hou, J. et al. Photo-responsive helical motion by light-driven molecular motors in a liquid-crystal network. Angew. Chem. Int. Ed. 60, 8251–8257 (2021).

    CAS  Google Scholar 

  20. Bandara, H. D. & Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 41, 1809–1825 (2012).

    CAS  PubMed  Google Scholar 

  21. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    CAS  PubMed  Google Scholar 

  22. Li, Y., Urbas, A. & Li, Q. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. J. Am. Chem. Soc. 134, 9573–9576 (2012).

    CAS  PubMed  Google Scholar 

  23. Li, Y., Xue, C., Wang, M., Urbas, A. & Li, Q. Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self‐organized helical superstructures. Angew. Chem. Int. Ed. 52, 13703–13707 (2013).

    CAS  Google Scholar 

  24. Li, Y., Wang, M., Wang, H., Urbas, A. & Li, Q. Rationally designed axially chiral diarylethene switches with high helical twisting power. Chem. Eur. J. 20, 16286–16292 (2014).

    CAS  PubMed  Google Scholar 

  25. Denekamp, C. & Feringa, B. L. Optically active diarylethenes for multimode photoswitching between liquid–crystalline phases. Adv. Mater. 10, 1080–1082 (1998).

    CAS  Google Scholar 

  26. Uchida, K., Kawai, Y., Shimizu, Y., Vill, V. & Irie, M. An optically active diarylethene having cholesterol units: a dopant for photoswitching of liquid crystal phases. Chem. Lett. 29, 654–655 (2000).

    Google Scholar 

  27. Yamaguchi, T., Inagawa, T., Nakazumi, H., Irie, S. & Irie, M. Photoswitching of helical twisting power of a chiral diarylethene dopant: pitch change in a chiral nematic liquid crystal. Chem. Mater. 12, 869–871 (2000).

    CAS  Google Scholar 

  28. van Leeuwen, T. et al. Photoinduced pitch changes in chiral nematic liquid crystals formed by doping with chiral diarylethene. J. Mater. Chem. 21, 3142–3246 (2011).

    Google Scholar 

  29. Li, Y., Urbas, A. & Li, Q. Synthesis and characterization of light-driven dithienylcyclopentene switches with axial chirality. J. Org. Chem. 76, 7148–7156 (2011).

    CAS  PubMed  Google Scholar 

  30. Zheng, Z. et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat. Photonics 16, 226–234 (2022).

    CAS  Google Scholar 

  31. Shao, B. & Aprahamian, I. Hydrazones as new molecular tools. Chem 6, 2162–2173 (2020).

    CAS  Google Scholar 

  32. Qian, H., Pramanik, S. & Aprahamian, I. Photochromic hydrazone switches with extremely long thermal half-lives. J. Am. Chem. Soc. 139, 9140–9143 (2017).

    CAS  PubMed  Google Scholar 

  33. Shao, B., Qian, H., Li, Q. & Aprahamian, I. Structure property analysis of the solution and solid-state properties of bistable photochromic hydrazones. J. Am. Chem. Soc. 141, 8364–8371 (2019).

    CAS  PubMed  Google Scholar 

  34. Moran, M. J., Magrini, M., Walba, D. M. & Aprahamian, I. Driving a liquid crystal phase transition using a photochromic hydrazone. J. Am. Chem. Soc. 140, 13623–13627 (2018).

    CAS  PubMed  Google Scholar 

  35. Shin, S. et al. Tuning helical twisting power of isosorbide-based chiral dopants by chemical modifications. Mol. Cryst. Liq. Cryst. 534, 19–31 (2011).

    CAS  Google Scholar 

  36. Khan, M. N. & Wirth, T. Chiral triptycenes: concepts, progress and prospects. Chem. Eur. J. 27, 7059–7068 (2021).

    CAS  PubMed  Google Scholar 

  37. Norvez, S. Liquid crystalline triptycene derivatives. J. Org. Chem. 58, 2414–2418 (1993).

    CAS  Google Scholar 

  38. Norvez, S. & Simon, J. Epitaxygens: mesomorphic properties of triptycene derivatives. Liq. Cryst. 14, 1389–1395 (1993).

    CAS  Google Scholar 

  39. Long, T. M. & Swager, T. M. Triptycene-containing bis(phenylethynyl)benzene nematic liquid crystals. J. Mater. Chem. 12, 3407–3412 (2002).

    CAS  Google Scholar 

  40. Lohr, A. & Swager, T. M. Stabilization of the nematic mesophase by a homogeneously dissolved conjugated polymer. J. Mater. Chem. 20, 8107–8111 (2010).

    CAS  Google Scholar 

  41. Kelly, T. R., Silva, R. A., De Silva, H., Jasmin, S. & Zhao, Y. A rationally designed prototype of a molecular motor. J. Am. Chem. Soc. 122, 6935–6949 (2000).

    CAS  PubMed  Google Scholar 

  42. Ube, H., Yasuda, Y., Sato, H. & Shionoya, M. Metal-centred azaphosphatriptycene gear with a photo-and thermally driven mechanical switching function based on coordination isomerism. Nat. Commun. 8, 4296 (2017).

    Google Scholar 

  43. Long, T. M. & Swager, T. M. Minimization of free volume: alignment of triptycenes in liquid crystals and stretched polymers. Adv. Mater. 13, 601–604 (2001).

    CAS  Google Scholar 

  44. Long, T. M. & Swager, T. M. Using ‘internal free volume’ to increase chromophore alignment. J. Am. Chem. Soc. 124, 3826–3827 (2002).

    CAS  PubMed  Google Scholar 

  45. Zhu, Z. & Swager, T. M. Conjugated polymer liquid crystal solutions: control of conformation and alignment. J. Am. Chem. Soc. 124, 9670–9671 (2002).

    CAS  PubMed  Google Scholar 

  46. Ohira, A. & Swager, T. M. Ordering of poly(p-phenylene ethynylene)s in liquid crystals. Macromolecules 40, 19–25 (2007).

    CAS  Google Scholar 

  47. Yang, S. et al. Multistage reversible Tg photomodulation and hardening of hydrazone-containing polymers. J. Am. Chem. Soc. 143, 16348–16353 (2021).

    CAS  PubMed  Google Scholar 

  48. Haris, U., Plank, J. T., Li, B., Page, Z. A. & Lippert, A. R. Visible light chemical micropatterning using a digital light processing fluorescence microscope. ACS Cent. Sci. 8, 67–76 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. Gu, C., Jia, A.-B., Zhang, Y.-M. & Zhang, S. X.-A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, Z. & Swager, T. M. Synthesis and characterization of poly (2,6-triptycene). Macromolecules 41, 6880–6885 (2008).

    CAS  Google Scholar 

  51. Zhang, Q. P. et al. Triptycene‐based chiral porous polyimides for enantioselective membrane separation. Angew. Chem. Int. Ed. 133, 12891–12895 (2021).

    Google Scholar 

  52. Ryabchun, A., Li, Q., Lancia, F., Aprahamian, I. & Katsonis, N. Shape-persistent actuators from hydrazone photoswitches. J. Am. Chem. Soc. 141, 1196–1200 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Narazaki, Y., Nishikawa, H., Higuchi, H., Okumura, Y. & Kikuchi, H. Substituent effects of bridged binaphthyl-type chiral dopants on the helical twisting power in dopant-induced chiral liquid crystals. RSC Adv. 8, 971–979 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Eelkema, R. & Feringa, B. L. Amplification of chirality in liquid crystals. Org. Biomol. Chem. 4, 3729–3745 (2006).

    CAS  PubMed  Google Scholar 

  55. Pieraccini, S., Masiero, S., Ferrarini, A. & Spada, G. P. Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications. Chem. Soc. Rev. 40, 258–271 (2011).

    CAS  PubMed  Google Scholar 

  56. Katsonis, N., Lacaze, E. & Ferrarini, A. Controlling chirality with helix inversion in cholesteric liquid crystals. J. Mater. Chem. 22, 7088–7097 (2012).

    CAS  Google Scholar 

  57. Wang, D., Park, S.-Y. & Kang, I.-K. Liquid crystals: emerging materials for use in real-time detection applications. J. Mater. Chem. C 3, 9038–9047 (2015).

    CAS  Google Scholar 

  58. White, T. J., McConney, M. E. & Bunning, T. J. Dynamic color in stimuli-responsive cholesteric liquid crystals. J. Mater. Chem. C 20, 9832–9847 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

I.A. is thankful for the generous support from National Science Foundation (NSF) Division of Materials Research (DMR) (2104464). A.R.L. gratefully acknowledges support from the Welch Research Foundation (N-2038-202004010). We thank L.D. Custis for experimental support. I.A. is thankful to T. Swager (Massachusetts Institute of Technology) for suggesting the use of triptycene as the chiral motif in LC dopants at a Telluride workshop in 2016, and T. Ikai (Nagoya University) for supplying racemic 2,6-diaminotriptycene at a very early stage of this research.

Author information

Authors and Affiliations

Authors

Contributions

I.B., J.T.P., D.H. and B.B. planned and carried out the experimental work and characterization studies. I.A. and A.R.L. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Ivan Aprahamian.

Ethics declarations

Competing interests

A.R.L. declares a financial stake in BioLum Sciences, LLC. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Masoud Kazem-Rostami, Quan Li and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–99, Tables 1–15, Scheme 1, Discussion and experimental procedures.

Source data

Source Data Fig. 1

Circular dichroism data underlying Fig. 1b,c.

Source Data Fig. 2

Transmittance data underlying Fig. 2b.

Source Data Fig. 3

Transmittance data underlying Fig. 3a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, I., Plank, J.T., Balamut, B. et al. Multi-stage and multi-colour liquid crystal reflections using a chiral triptycene photoswitchable dopant. Nat. Chem. 16, 2084–2090 (2024). https://doi.org/10.1038/s41557-024-01648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01648-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing