Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remote chirality transfer in low-dimensional hybrid metal halide semiconductors

Abstract

In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10−2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Remote chirality transfer in hybrid metal halides.
Fig. 2: Effect of composition and chiral molecule concentration on CD.
Fig. 3: Chiral molecule distribution and interaction.
Fig. 4: Effect of the chiral molecule functional group and DFT calculations.

Similar content being viewed by others

Data availability

All data are available in the Article and Supplementary Information, or on request from the corresponding authors. Supplementary Data 1 contains the structure coordinates for lattice and relaxed ion positions. Source data are provided with this paper.

Code availability

The codes are available through open-source software, JDFTx60 and QUANTUM ESPRESSO61, or from the authors upon request.

References

  1. Zhang, L., Zhang, X. & Lu, G. Intramolecular band alignment and spin–orbit coupling in two-dimensional halide perovskites. J. Phys. Chem. Lett. 11, 6982–6989 (2020).

    CAS  PubMed  Google Scholar 

  2. Crassous, J. et al. Materials for chiral light control. Nat. Rev. Mater. 8, 365–371 (2023).

    Google Scholar 

  3. Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014).

    Google Scholar 

  5. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    CAS  PubMed  Google Scholar 

  6. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023).

    CAS  PubMed  Google Scholar 

  8. Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).

    CAS  PubMed  Google Scholar 

  9. Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jana, M. K. et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba–Dresselhaus spin–orbit coupling. Nat. Commun. 11, 4699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu, H., Vardeny, Z. V. & Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 6, 470–485 (2022).

    PubMed  Google Scholar 

  12. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Google Scholar 

  13. Kim, Y.-H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816–8825 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tran, T. K. T. et al. Anionic ligand-induced chirality in perovskite nanoplatelets. Chem. Commun. 59, 1485–1488 (2023).

    CAS  Google Scholar 

  15. Long, G. et al. Perovskite metasurfaces with large superstructural chirality. Nat. Commun. 13, 1551 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, H. et al. Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles. Adv. Sci. 9, e2104598 (2022).

    Google Scholar 

  17. Chen, G. et al. Nucleation-mediated growth of chiral 3D organic-inorganic perovskite single crystals. Nat. Chem. 15, 1581–1590 (2023).

    CAS  PubMed  Google Scholar 

  18. Kim, Y. H. et al. The structural origin of chiroptical properties in perovskite nanocrystals with chiral organic ligands. Adv. Funct. Mater. 32, 2200454 (2022).

    CAS  Google Scholar 

  19. Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).

    CAS  PubMed  Google Scholar 

  20. Reid, J. P. Open questions on the transfer of chirality. Commun. Chem. 4, 171 (2021).

    PubMed  PubMed Central  Google Scholar 

  21. Clayden, J., Lund, A., Vallverdú, L. & Helliwell, M. Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431, 966–971, (2004).

    CAS  PubMed  Google Scholar 

  22. Zhang, Y., Wang, Y. & Dai, W.-M. Efficient remote axial-to-central chirality transfer in enantioselective smi2-mediated reductive coupling of aldehydes with crotonates of atropisomeric 1-naphthamides. J. Org. Chem. 71, 2445–2455, (2006).

    CAS  PubMed  Google Scholar 

  23. Ikai, T. et al. Control of one-handed helicity in polyacetylenes: impact of an extremely small amount of chiral substituents. J. Am. Chem. Soc. 145, 24862–24876 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    CAS  PubMed  Google Scholar 

  25. Wang, Y. et al. Elucidation of the origin of chiral amplification in discrete molecular polyhedra. Nat. Commun. 9, 488 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Green, M. M. et al. Macromolecular stereochemistry: the out-of-proportion influence of optically active comonomers on the conformational characteristics of polyisocyanates. The sergeants and soldiers experiment. J. Am. Chem. Soc. 111, 6452–6454 (1989).

    Google Scholar 

  27. Wang, Y. B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).

    CAS  PubMed  Google Scholar 

  28. Qin, T. et al. Atropselective syntheses of (−) and (+) rugulotrosin A utilizing point-to-axial chirality transfer. Nat. Chem. 7, 234–240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahal, E., Mandal, S. C. & Pathak, B. Understanding the role of spacer cation in 2D layered halide perovskites to achieve stable perovskite solar cells. Mater. Adv. 3, 2464–2474 (2022).

    CAS  Google Scholar 

  30. Pham, M. T. et al. Strong Rashba–Dresselhaus effect in nonchiral 2D Ruddlesden–Popper perovskites. Adv. Optical Mater. 10, 2101232 (2021).

    Google Scholar 

  31. Sercel, P. C., Vardeny, Z. V. & Efros, A. L. Circular dichroism in non-chiral metal halide perovskites. Nanoscale 12, 18067–18078 (2020).

    CAS  PubMed  Google Scholar 

  32. Lin, C. W. et al. Structure-dependent photoluminescence in low-dimensional ethylammonium, propylammonium, and butylammonium lead iodide perovskites. ACS Appl. Mater. Interfaces 12, 5008–5016 (2020).

    CAS  PubMed  Google Scholar 

  33. Luo, B. et al. Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 123, 14239–14245 (2019).

    CAS  Google Scholar 

  34. Mao, L. et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. J. Am. Chem. Soc. 139, 11956–11963 (2017).

    CAS  PubMed  Google Scholar 

  35. Ogunniran, K. O., Murugadoss, G., Thangamuthu, R., Karthikeyan, J. & Murugan, P. Integration of phenylammoniumiodide (PAI) as a surface coating molecule towards ambient stable MAPbI3 perovskite for solar cell application. Sol. Energy Mater. Sol. Cells 191, 316–328 (2019).

    CAS  Google Scholar 

  36. Ghoreishi, F. S. et al. Enhanced performance of CH3NH3PbI3 perovskite solar cells via interface modification using phenyl ammonium iodide derivatives. J. Power Sources 473, 228492 (2020).

    CAS  Google Scholar 

  37. Kim, S. Y., Yang, J. M., Choi, E. S. & Park, N. G. Effect of interlayer spacing in layered perovskites on resistive switching memory. Nanoscale 11, 14330–14338 (2019).

    CAS  PubMed  Google Scholar 

  38. Jokar, E. et al. Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS Energy Lett. 6, 485–492 (2021).

    CAS  Google Scholar 

  39. Quan, L. N. et al. Vibrational relaxation dynamics in layered perovskite quantum wells. Proc. Natl Acad. Sci. USA 118, e2104425118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Z. et al. A new organic interlayer spacer for stable and efficient 2D Ruddlesden–Popper perovskite solar cells. Nano Lett. 19, 5237–5245 (2019).

    CAS  PubMed  Google Scholar 

  41. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    CAS  Google Scholar 

  43. Fortino, M., Mattoni, A. & Pietropaolo, A. Atomistic modeling of metal–ligand chirality transfer and chiroptical properties of lead and tin hybrid perovskites. J. Mater. Chem. C 11, 9135–9143 (2023).

    CAS  Google Scholar 

  44. Xie, Y. et al. Chiral cation doping for modulating structural symmetry of 2D perovskites. J. Am. Chem. Soc. 145, 17831–17844 (2023).

    CAS  PubMed  Google Scholar 

  45. Wu, Y. et al. Ligand-assisted self-assembly of 3D perovskite nanocrystals into chiral inorganic quasi-2D perovskites (n = 3) with ligand-ratio-dependent chirality inversion. Small 19, e2301034 (2023).

    PubMed  Google Scholar 

  46. Wan, L. et al. Inverting the handedness of circularly polarized luminescence from light-emitting polymers using film thickness. ACS Nano 13, 8099–8105 (2019).

    CAS  PubMed  Google Scholar 

  47. Jiang, X. et al. Top-down induced crystallization orientation toward highly efficient p–i–n perovskite solar cells. Adv. Mater. 36, 2313524 (2024).

    CAS  Google Scholar 

  48. Su, Y., Xu, C., Gao, L., Wei, G. & Ma, T. Solvent-assisted crystallization of two-dimensional Ruddlesden–Popper perovskite. Chem. Commun. 57, 10552–10555 (2021).

    CAS  Google Scholar 

  49. Nam, J. K. et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 17, 2028–2033 (2017).

    CAS  PubMed  Google Scholar 

  50. Multunas, C., Grieder, A., Xu, J., Ping, Y. & Sundararaman, R. Circular dichroism of crystals from first principles. Phys. Rev. Mater. 7, 123801 (2023).

    CAS  Google Scholar 

  51. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    CAS  PubMed  Google Scholar 

  52. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    CAS  PubMed  Google Scholar 

  53. Goldsmith, M.-R. et al. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates. Phys. Chem. Chem. Phys. 8, 63–67 (2006).

    CAS  PubMed  Google Scholar 

  54. Noguez, C. & Garzón, I. L. Optically active metal nanoparticles. Chem. Soc. Rev. 38, 757–771, (2009).

    CAS  PubMed  Google Scholar 

  55. Ishidate, R., Markvoort, A. J., Maeda, K. & Yashima, E. Unexpectedly strong chiral amplification of chiral/achiral and chiral/chiral copolymers of biphenylylacetylenes and further enhancement/inversion and memory of the macromolecular helicity. J. Am. Chem. Soc. 141, 7605–7614 (2019).

    CAS  PubMed  Google Scholar 

  56. Helmich, F., Smulders, M. M., Lee, C. C., Schenning, A. P. & Meijer, E. W. Effect of stereogenic centers on the self-sorting, depolymerization, and atropisomerization kinetics of porphyrin-based aggregates. J. Am. Chem. Soc. 133, 12238–12246 (2011).

    CAS  PubMed  Google Scholar 

  57. Dressel, C., Reppe, T., Prehm, M., Brautzsch, M. & Tschierske, C. Chiral self-sorting and amplification in isotropic liquids of achiral molecules. Nat. Chem. 6, 971–977, (2014).

    CAS  PubMed  Google Scholar 

  58. Son, J. et al. Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite. Nat. Commun. 14, 3124 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, Z. et al. Revealing the intrinsic chiroptical activity in chiral metal-halide semiconductors. J. Am. Chem. Soc. 144, 22242–22250 (2022).

    CAS  PubMed  Google Scholar 

  60. Sundararaman, R. et al. JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under contract no. DE-AC36-08GO28308. This project was supported by the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science within the DOE. The views expressed in the Article do not necessarily represent the views of the DOE or the US Government. We thank P. Therdkatanyuphong for providing a sample of R/S-BHO.

Author information

Authors and Affiliations

Authors

Contributions

M.A.H., M.C.B. and J.M.L. conceived the idea and designed the experiments. R.B. assisted in CD measurements. S.P.H. performed the TOF-SIMS measurements. B.A. carried out the NMR experiments. M.P.H. synthesized the (R-MBA)2PbI4 crystals. Y.D. and M.C.B. contributed to optical measurements. A.G. and Y.P. performed the DFT calculations and wrote the analysis. J.Z. and S.R.M. synthesized the R/S-BHO and R/S-BHS chiral molecules. J.Y.Y., K.Z. and J.J.B. performed and analysed XPS measurements. H.H.W. and Z.V.V. performed the Faraday rotation measurements. J.L.B. performed the FTIR measurements and analysis. Y.X. and D.B.M. contributed to XRD measurements and analysis. M.A.H. and J.M.L. wrote the initial draft of the paper, and all authors contributed to the editing of the paper.

Corresponding author

Correspondence to Joseph M. Luther.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jovana Milic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–58, Notes 1–9, Tables 1 and 2 and additional methods.

Supplementary Data 1

Structure coordinates for the lattice and relaxed ion positions.

Source data

Source Data Figs. 2 and 4

CD spectra source data for Figs. 2 and 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, M.A., Grieder, A., Harvey, S.P. et al. Remote chirality transfer in low-dimensional hybrid metal halide semiconductors. Nat. Chem. 17, 29–37 (2025). https://doi.org/10.1038/s41557-024-01662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01662-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing