Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo design of ribosomally synthesized and post-translationally modified peptides

Abstract

In nature, peptides are enzymatically modified to constrain their structure and introduce functional moieties. De novo peptide structures could be built by combining enzymes from different pathways, but determining the rules of their use is difficult. We present a biophysical model to combine enzymes sourced from bacterial ribosomally synthesized and post-translationally modified peptide (RiPP) gene clusters. Using a pipeline to evaluate more than 1,000 peptides, the model was parameterized under uniform conditions in Escherichia coli for enzymes from different classes (graspetide, spliceotide, pantocin, cyanobactin, glycocin, lasso peptide and lanthipeptide). Synthetic leader peptides with recognition sequences for up to three enzymes were designed to modify core sequences sharing no identity to natural RiPPs. Empirically, RiPPs with the desired modifications constituted 7–67% of the total peptides produced, and 6 of our 8 peptide designs were successfully modified. This work is an example of the design of enzyme-modified peptides and libraries, using a framework that can be expanded to include new enzymes and chemical moieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Determination of leader-dependent enzyme RSs and their positioning rules.
Fig. 2: Extraction of core sequence rules.
Fig. 3: Synthetic precursor peptides that are modified by multiple enzymes.
Fig. 4: Pathway design to produce target RiPPs.

Similar content being viewed by others

Data availability

Data associated with this Article can be found in the Supplementary Information. All strains and plasmids are available upon request.

Code availability

Code is available on GitHub at https://github.com/VoigtLab/ripp-design (ref. 96). Instructions for its use are provided in Supplementary Note 12.

References

  1. Montalban-Lopez, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    CAS  PubMed  Google Scholar 

  2. Wallace, A. K., Chanut, N. & Voigt, C. A. Silica nanostructures produced using diatom peptides with designed post‐translational modifications. Adv. Funct. Mater. 30, 2000849 (2020).

    CAS  Google Scholar 

  3. Goto, Y. & Suga, H. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures. Curr. Opin. Chem. Biol. 46, 82–90 (2018).

    CAS  PubMed  Google Scholar 

  4. Hudson, G. A. & Mitchell, D. A. RiPP antibiotics: biosynthesis and engineering potential. Curr. Opin. Microbiol. 45, 61–69 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burkhart, B. J. et al. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Oman, T. J. & Van Der Donk, W. A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Z. et al. Biosynthetic timing and substrate specificity for the thiopeptide thiomuracin. J. Am. Chem. Soc. 138, 15511–15514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Crone, W. J. K. et al. Dissecting bottromycin biosynthesis using comparative untargeted metabolomics. Angew. Chem. Int. Ed. 55, 9639–9643 (2016).

    CAS  Google Scholar 

  10. Bhushan, A. et al. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat. Chem. 11, 931–939 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bowers, A. A. et al. Generation of thiocillin ring size variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J. Am. Chem. Soc. 134, 10313–10316 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thibodeaux, C. J., Ha, T. & Van Der Donk, W. A. A price to pay for relaxed substrate specificity: a comparative kinetic analysis of the class II lanthipeptide synthetases ProcM and HalM2. J. Am. Chem. Soc. 136, 17513–17529 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, C., Zhang, F. & Kelly, W. L. Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Mol. Biosyst. 7, 82–90 (2011).

    CAS  PubMed  Google Scholar 

  14. Freeman, M. F. et al. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).

    CAS  PubMed  Google Scholar 

  15. Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed. 53, 8503–8507 (2014).

    CAS  Google Scholar 

  16. Van Der Velden, N. S. et al. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products. Nat. Chem. Biol. 13, 833–835 (2017).

    PubMed  Google Scholar 

  17. Ruffner, D. E., Schmidt, E. W. & Heemstra, J. R. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth. Biol. 4, 482–492 (2015).

    CAS  PubMed  Google Scholar 

  18. Si, Y. et al. Cell-free biosynthesis to evaluate lasso peptide formation and enzyme-substrate tolerance. J. Am. Chem. Soc. 143, 5917–5927 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mordhorst, S. et al. Posttranslationally acting arginases provide a ribosomal route to non‐proteinogenic ornithine residues in diverse peptide sequences. Angew. Chem. Int. Ed. 59, 21442–21447 (2020).

    CAS  Google Scholar 

  20. Hao, Y. et al. Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. Proc. Natl Acad. Sci. USA 113, 14037–14042 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kupke, T. et al. Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. J. Biol. Chem. 270, 11282–11289 (1995).

    CAS  PubMed  Google Scholar 

  22. Zhang, Q. & Van Der Donk, W. A. Catalytic promiscuity of a bacterial α-N-methyltransferase. FEBS Lett. 586, 3391–3397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lohans, C. T., Li, J. L. & Vederas, J. C. Structure and biosynthesis of carnolysin, a homologue of enterococcal cytolysin with d-amino acids. J. Am. Chem. Soc. 136, 13150–13153 (2014).

    CAS  PubMed  Google Scholar 

  24. Fleming, S. R. et al. Exploring the post-translational enzymology of PaaA by mRNA display. J. Am. Chem. Soc. 142, 5024–5028 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fuchs, S. W. et al. A lanthipeptide-like N-terminal leader region guides peptide epimerization by radical SAM epimerases: implications for RiPP evolution. Angew. Chem. Int. Ed. 55, 12330–12333 (2016).

    CAS  Google Scholar 

  26. Hegemann, J. D. et al. Assessing the flexibility of the prochlorosin 2.8 scaffold for bioengineering applications. ACS Synth. Biol. 8, 1204–1214 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cotter, P. D. et al. Complete alanine scanning of the two‐component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol. Microbiol. 62, 735–747 (2006).

    CAS  PubMed  Google Scholar 

  28. Young, T. S. Biosynthesis and directed evolution of unnatural peptides and proteins. Rev. Cell Biol. Mol. Med. 1, 3 (2015).

    Google Scholar 

  29. Young, T. S., Dorrestein, P. C. & Walsh, C. T. Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. Chem. Biol. 19, 1600–1610 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vinogradov, A. A. et al. Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat. Commun. 11, 2272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmitt, S. et al. Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nat. Chem. Biol. 15, 437–443 (2019).

    CAS  PubMed  Google Scholar 

  32. Pan, S. J. & Link, A. J. Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J. Am. Chem. Soc. 133, 5016–5023 (2011).

    CAS  PubMed  Google Scholar 

  33. Tran, H. L. et al. Structure-activity relationship and molecular mechanics reveal the importance of ring entropy in the biosynthesis and activity of a natural product. J. Am. Chem. Soc. 139, 2541–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fleming, S. R. et al. Flexizyme-enabled benchtop biosynthesis of thiopeptides. J. Am. Chem. Soc. 141, 758–762 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Korneli, M. et al. Promiscuous installation of d-amino acids in gene-encoded peptides. ACS Synth. Biol. 10, 236–242 (2021).

    CAS  PubMed  Google Scholar 

  36. Burkhart, B. J. et al. Chimeric leader peptides for the generation of non-natural hybrid RiPP products. ACS Central Sci. 3, 629–638 (2017).

    CAS  Google Scholar 

  37. Huang, C.-F. & Mrksich, M. Profiling protein tyrosine phosphatase specificity with self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry and peptide arrays. ACS Comb. Sci. 21, 760–769 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sardar, D. et al. Recognition sequences and substrate evolution in cyanobactin biosynthesis. ACS Synth. Biol. 4, 167–176 (2015).

    CAS  PubMed  Google Scholar 

  39. Sardar, D., Lin, Z. & Schmidt, E. W. Modularity of RiPP enzymes enables designed synthesis of decorated peptides. Chem. Biol. 22, 907–916 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Heel, A. J. et al. Designing and producing modified, new-to-nature peptides with antimicrobial activity by use of a combination of various lantibiotic modification enzymes. ACS Synth. Biol. 2, 397–404 (2013).

    PubMed  Google Scholar 

  41. Ghodge, S. V. et al. Post-translational Claisen condensation and decarboxylation en route to the bicyclic core of Pantocin A. J. Am. Chem. Soc. 138, 5487–5490 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morinaka, B. I. et al. Natural noncanonical protein splicing yields products with diverse β-amino acid residues. Science 359, 779–782 (2018).

    CAS  PubMed  Google Scholar 

  43. Su, Y. et al. Discovery and characterization of a novel C-terminal peptide carboxyl methyltransferase in a lassomycin-like lasso peptide biosynthetic pathway. Appl. Microbiol. Biotechnol. 103, 2649–2664 (2019).

    CAS  PubMed  Google Scholar 

  44. Zhu, S. et al. Dual substrate-controlled kinase activity leads to polyphosphorylated lasso peptides. FEBS Lett. 590, 3323–3334 (2016).

    CAS  PubMed  Google Scholar 

  45. Zhu, S. et al. Insights into the unique phosphorylation of the lasso peptide paeninodin. J. Biol. Chem. 291, 13662–13678 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer, A. J. et al. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    CAS  PubMed  Google Scholar 

  47. Glassey, E. et al. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLoS ONE 17, e0266488 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Clifton, K. P. et al. The genetic insulator RiboJ increases expression of insulated genes. J. Biol. Eng. 12, 23 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Walsh, C. T., Malcolmson, S. J. & Young, T. S. Three ring posttranslational circuses: insertion of oxazoles, thiazoles and pyridines into protein-derived frameworks. ACS Chem. Biol. 7, 429–442 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Michael, J. P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep. 24, 191–222 (2007).

    PubMed  Google Scholar 

  52. Roh, H. et al. A topologically distinct modified peptide with multiple bicyclic core motifs expands the diversity of microviridin‐like peptides. ChemBioChem 20, 1051–1059 (2019).

    CAS  PubMed  Google Scholar 

  53. Zhang, Y. et al. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Nat. Commun. 9, 1780 (2018).

    PubMed  PubMed Central  Google Scholar 

  54. Wells, J. A. Additivity of mutational effects in proteins. Biochemistry 29, 8509–8517 (1990).

    CAS  PubMed  Google Scholar 

  55. Carneiro, M. & Hartl, D. L. Colloquium papers: adaptive landscapes and protein evolution. Proc. Natl Acad. Sci. USA 107, 1747–1751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koch, P. et al. Optimization of the antimicrobial peptide Bac7 by deep mutational scanning. BMC Biol. 20, 114 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tracewell, C. A. & Arnold, F. H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Roy, R. S. et al. Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1-26. Chem. Biol. 5, 217–228 (1998).

    CAS  PubMed  Google Scholar 

  59. Chekan, J. R., Ongpipattanakul, C. & Nair, S. K. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis. Proc. Natl Acad. Sci. USA 116, 24049–24055 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bobeica, S. C. et al. Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. eLife 8, e42305 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Koehnke, J. et al. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nat. Chem. Biol. 11, 558–563 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang, W. et al. Amino acid sequence determinants of β-lactamase structure and activity. J. Mol. Biol. 258, 688–703 (1996).

    CAS  PubMed  Google Scholar 

  63. Gavrish, E. et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 21, 509–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lipinski, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    CAS  PubMed  Google Scholar 

  65. Palm, K. et al. Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J. Med. Chem. 41, 5382–5392 (1998).

    CAS  PubMed  Google Scholar 

  66. Kaunietis, A. et al. Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nat. Commun. 10, 1115 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Butler, M. S. et al. Glycopeptide antibiotics: back to the future. J. Antibiotics 67, 631–644 (2014).

    CAS  Google Scholar 

  68. Moradi, S. V. et al. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. 7, 2492–2500 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schnell, N. et al. Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur. J. Biochem. 204, 57–68 (1992).

    CAS  PubMed  Google Scholar 

  70. Schnell, N. et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333, 276–278 (1988).

    CAS  PubMed  Google Scholar 

  71. Sit, C. S., Yoganathan, S. & Vederas, J. C. Biosynthesis of aminovinyl-cysteine-containing peptides and its application in the production of potential drug candidates. Acc. Chem. Res. 44, 261–268 (2011).

    CAS  PubMed  Google Scholar 

  72. Morrison, C. Constrained peptides’ time to shine? Nat. Rev. Drug Discov. 17, 531–533 (2018).

    CAS  PubMed  Google Scholar 

  73. Mandal, P. K. et al. Potent and selective phosphopeptide mimetic prodrugs targeted to the Src Homology 2 (SH2) domain of signal transducer and activator of transcription 3. J. Med. Chem. 54, 3549–3563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kapust, R. B. et al. The P1′ specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 294, 949–955 (2002).

    CAS  PubMed  Google Scholar 

  75. Eng, C. H. et al. ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Res. 46, D509–D515 (2018).

    CAS  PubMed  Google Scholar 

  76. Knappe, T. A. et al. Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew. Chem. Int. Ed. 50, 8714–8717 (2011).

    CAS  Google Scholar 

  77. Yang, X. et al. A lanthipeptide library used to identify a protein–protein interaction inhibitor. Nat. Chem. Biol. 14, 375–380 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. King, A. M. et al. Selection for constrained peptides that bind to the SARS-CoV-2 spike protein. Nat. Commun. 12, 6343 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rahman, I. R. et al. Substrate recognition by the Class II lanthipeptide synthetase HalM2. ACS Chem. Biol. 15, 1473–1486 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Goto, Y. et al. One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase. Chem. Biol. 21, 766–774 (2014).

    CAS  PubMed  Google Scholar 

  81. Tianero, M. D. et al. Metabolic model for diversity-generating biosynthesis. Proc. Natl Acad. Sci. USA 113, 1772–1777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gu, W. & Schmidt, E. W. Three principles of diversity-generating biosynthesis. Acc. Chem. Res. 50, 2569–2576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bennallack, P. R. & Griffitts, J. S. Elucidating and engineering thiopeptide biosynthesis. World J. Microbiol. Biotechnol. 33, 119 (2017).

    PubMed  Google Scholar 

  84. Vagstad, A. L. et al. Introduction of d‐amino acids in minimalistic peptide substrates by an S‐adenosyl‐L‐methionine radical epimerase. Angew. Chem. Int. Ed. 58, 2246–2250 (2019).

    CAS  Google Scholar 

  85. Sarkar, S., Gu, W. & Schmidt, E. W. Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis. ACS Catal. 10, 7146–7153 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ortega, M. A. et al. Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO. ACS Chem. Biol. 9, 1718–1725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cebrián, R. et al. Design and expression of specific hybrid lantibiotics active against pathogenic Clostridium spp. Front. Microbiol. 10, 2154 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Liu, R. et al. A cell‐free platform based on nisin biosynthesis for discovering novel lanthipeptides and guiding their overproduction in vivo. Adv. Sci. 7, 2001616 (2020).

    CAS  Google Scholar 

  89. Kloosterman, A. M. et al. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. mSystems 5, e00267-20 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Skinnider, M. A. et al. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc. Natl Acad. Sci. USA 113, E6343–E6351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kloosterman, A. M. et al. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biol. 18, e3001026 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kloosterman, A. M., Medema, M. H. & Van Wezel, G. P. Omics-based strategies to discover novel classes of RiPP natural products. Curr. Opin. Biotechnol. 69, 60–67 (2021).

    CAS  PubMed  Google Scholar 

  93. Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jin, M. et al. Structural and functional analysis of pantocin A: an antibiotic from Pantoea agglomerans discovered by heterologous expression of cloned genes. Angew. Chem. Int. Ed. 42, 2898–2901 (2003).

    CAS  Google Scholar 

  95. Goodman, K. J. & Brenna, J. T. Curve fitting for restoration of accuracy for overlapping peaks in gas chromatography/combustion isotope ratio mass spectrometry. Anal. Chem. 66, 1294–1301 (1994).

    CAS  PubMed  Google Scholar 

  96. Glassey, E., Zhang, Z., King, A. M., Niquille, D. L. & Voigt, C. A. ripp-design. GitHub https://github.com/VoigtLab/ripp-design

Download references

Acknowledgements

This research was funded by the US Defense Advanced Research Projects Agency’s Living Foundries programme award (HR0011-12-C-0067), the US Defense Advanced Research Project Agency’s 1KM programme award (HR0011-15-C-0084) and a research grant from Novartis Institutes for Biomedical Research (NIMBR), a research grant from DSM Research, and a research grant from the US Office of Naval Research (N00014-18-1-2632). Research was additionally sponsored by the Army Research Office and was accomplished under cooperative agreement no. W911NF-22-2-0246. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.G. and C.A.V. conceived the study and designed the experiments. E.G. wrote the software. Z.Z., A.M.K., D.L.N. and E.G. performed MS/MS and analysed the data. Z.Z. performed NMR and analysed the data. E.G. and Z.Z. performed all other experiments and analysed the data. E.G., Z.Z. and C.A.V. wrote the manuscript.

Corresponding author

Correspondence to Christopher A. Voigt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13, Figs. 1–45 and Tables 1–6.

Reporting Summary

Supplementary Table 1

Source data for Figs. 1 and 2 and for Supplementary notes 3–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glassey, E., Zhang, Z., King, A.M. et al. De novo design of ribosomally synthesized and post-translationally modified peptides. Nat. Chem. 17, 233–245 (2025). https://doi.org/10.1038/s41557-024-01685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01685-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing