Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic biomolecular condensates enhance translation from a target mRNA in living cells

Abstract

Biomolecular condensates composed of proteins and RNA are one approach by which cells regulate post-transcriptional gene expression. Their formation typically involves the phase separation of intrinsically disordered proteins with a target mRNA, sequestering the mRNA into a liquid condensate. This sequestration regulates gene expression by modulating translation or facilitating RNA processing. Here we engineer synthetic condensates using a fusion of an RNA-binding protein, the human Pumilio2 homology domain (Pum2), and a synthetic intrinsically disordered protein, an elastin-like polypeptide (ELP), that can bind and sequester a target mRNA transcript. In protocells, sequestration of a target mRNA largely limits its translation. Conversely, in Escherichia coli, sequestration of the same target mRNA increases its translation. We characterize the Pum2–ELP condensate system using microscopy, biophysical and biochemical assays, and RNA sequencing. This approach enables the modulation of cell function via the formation of synthetic biomolecular condensates that regulate the expression of a target protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Pum2–ELP synthetic RNPG platform specifically binds mRNA tagged with a Pumilio2 recognition sequence.
Fig. 2: Synthetic RNPGs inhibit protein translation in protocells.
Fig. 3: Synthetic RNPGs enhance mRNA translation in live cells.
Fig. 4: Synthetic RNPGs are highly liquid biomolecular condensates.
Fig. 5: Quantification of mCherry protein abundance confirms synthetic RNPGs enhance protein translation and preferentially sequester target mRNA.
Fig. 6: Proposed model for translational enhancement by synthetic RNPGs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within this Article and its Supplementary Information. Numerical and gel image source data have been provided as source files. RNA-seq data may be downloaded from the Gene Expression Omnibus accession number GSE277409. Image and material requests should be made to the corresponding author.

Code availability

The R script used to compute TPM is available with this Article as Supplementary Information.

References

  1. Strzelecka, M. et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. Nat. Struct. Mol. Biol. 17, 403–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Hamada, T. et al. Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. J. Cell Sci. 131, jcs216051 (2018).

    Article  PubMed  Google Scholar 

  5. Buchan, J. R., Muhlrad, D. & Parker, R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183, 441–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corbet, G. A. & Parker, R. RNP granule formation: lessons from P-bodies and stress granules. Cold Spring Harb. Symp. Quant. Biol. 84, 203–215 (2020).

    Article  Google Scholar 

  7. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Treeck, B. V. et al. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc. Natl Acad. Sci. USA 115, 2734–2739 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buchan, J. R. mRNP granules. RNA Biol. 11, 1019–1030 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shapiro, D. M., Ney, M., Eghtesadi, S. A. & Chilkoti, A. Protein phase separation arising from intrinsic disorder: first-principles to bespoke applications. J. Phys. Chem. B 125, 6740–6759 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  13. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. & Paulsson, J. Synchronous long-term oscillations in a synthetic gene circuit. Nature 538, 514–517 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Panteli, J. T. & Forbes, N. S. Engineered bacteria detect spatial profiles in glucose concentration within solid tumor cell masses. Biotechnol. Bioeng. 113, 2474–2484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Dong, C., Fontana, J., Patel, A., Carothers, J. M. & Zalatan, J. G. Synthetic CRISPR–Cas gene activators for transcriptional reprogramming in bacteria. Nat. Commun. 9, 2489 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Adamala, K. P., Martin-Alarcon, D. A. & Boyden, E. S. Programmable RNA-binding protein composed of repeats of a single modular unit. Proc. Natl Acad. Sci. USA 113, E2579–E2588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mozhdehi, D. et al. Genetically encoded lipid–polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly. Nat. Chem. 10, 496–505 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Christensen, T., Hassouneh, W., Trabbic-Carlson, K. & Chilkoti, A. Predicting transition temperatures of elastin-like polypeptide fusion proteins. Biomacromolecules 14, 1514–1519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, N. K., Quiroz, F. G., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behavior of an elastin-like polypeptide. Biomacromolecules 15, 3522–3530 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quiroz, F. G. et al. Intrinsically disordered proteins access a range of hysteretic phase separation behaviors. Sci. Adv. 5, eaax5177 (2019).

    Article  CAS  Google Scholar 

  25. Hassouneh, W., Christensen, T. & Chilkoti, A. Elastin-like polypeptides as a purification tag for recombinant proteins. Curr. Protoc. Protein Sci. 6, 6.11.1–6.11.16 (2010).

    Google Scholar 

  26. Wang, X., McLachlan, J., Zamore, P. D. & Hall, T. M. T. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, G. & Hall, T. M. T. Alternate modes of cognate RNA recognition by human PUMILIO proteins. Structure 19, 361–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X., Zamore, P. D. & Hall, T. M. T. Crystal structure of a pumilio homology domain. Molecular Cell 7, 855–865 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Garcia-Jove Navarro, M. et al. RNA is a critical element for the sizing and the composition of phase-separated RNA–protein condensates. Nat. Commun. 10, 3230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meyer, D. E. & Chilkoti, A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5, 846–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Cheong, C.-G. & Hall, T. M. T. Engineering RNA sequence specificity of Pumilio repeats. Proc. Natl Acad. Sci. USA 103, 13635–13639 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shamji, M. F. et al. Synthesis and characterization of a thermally responsive tumor necrosis factor antagonist. J. Control. Release 129, 179–186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shamji, M. F. et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: sustained release of a local antiinflammatory therapeutic. Arthritis Rheum. 56, 3650–3661 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Schoof, M. et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370, 1473–1479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Forest-Nault, C., Gaudreault, J., Henry, O., Durocher, Y. & De Crescenzo, G. On the use of surface plasmon resonance biosensing to understand IgG–FcγR interactions. Int. J. Mol. Sci. 22, 6616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hrtska, S. C. L. et al. Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry 46, 2697–2706 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Simon, J. R., Eghtesadi, S. A., Dzuricky, M., You, L. & Chilkoti, A. Engineered ribonucleoprotein granules inhibit translation in protocells. Mol. Cell 75, 66–75.e65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robeson, J. L. & Tilton, R. D. Effect of concentration quenching on fluorescence recovery after photobleaching measurements. Biophys. J. 68, 2145–2155 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alshareedah, I. et al. Interplay between short-range attraction and long-range repulsion controls reentrant liquid condensation of ribonucleoprotein–RNA complexes. J. Am. Chem. Soc. 141, 14593–14602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Novy, R. & Morris, B. Use of glucose to control basal expression in the pET system. Innovations 13, 13–15 (2001).

    Google Scholar 

  41. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nature Phys 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  44. Gao, Z. et al. Liquid–liquid phase separation: unraveling the enigma of biomolecular condensates in microbial cells. Front. Microbiol. 12, 751880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dignon, G. L., Zheng, W., Kim, Y. C. & Mittal, J. Temperature-controlled liquid–liquid phase separation of disordered proteins. ACS Centr. Sci. 5, 821–830 (2019).

    Article  CAS  Google Scholar 

  46. Chen, X. & Mayr, C. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. RNA 28, 76–87 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Zacco, E. et al. RNA: The unsuspected conductor in the orchestra of macromolecular crowding. Chem. Rev. 124, 4734–4777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Niu, X. et al. Biomolecular condensates: formation mechanisms, biological functions, and therapeutic targets. MedComm 4, e223 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramat, A. & Simonelig, M. Activating translation with phase separation. Science 377, 712–713 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Parker, D. M., Winkenbach, L. P. & Osborne Nishimura, E. It’s just a phase: exploring the relationship between mRNA, biomolecular condensates, and translational control. Front. Genet. 13, 931220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dai, Y. et al. Programmable synthetic biomolecular condensates for cellular control. Nat. Chem. Biol. 19, 518–528 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan, H. et al. Transcription–translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits. Nucleic Acids Res. 45, 11043–11055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iost, I., Guillerez, J. & Dreyfus, M. Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J. Bacteriol. 174, 619–622 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McDaniel, J. R., Mackay, J. A., Quiroz, F. G. & Chilkoti, A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11, 944–952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McClure, R. et al. Computational analysis of bacterial RNA-seq data. Nucleic Acids Res. 41, e140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 41, D991–D995 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Duke Light Microscopy Core Facility for experimental support. A.C. acknowledges the support of the Air Force Office of Scientific Research (FA9550-20-1-0241), the National Institutes of Health (MIRA R35GM127042) and a ‘Beyond the Horizons’ award from the Pratt School of Engineering at Duke University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.M.S., S.D. and A.C. designed the experiments and wrote the manuscript. D.M.S. and S.D. collected all measurements, with exception of in vitro data for Supplementary Figs. 1–3 and 6 (collected by S.A.E.) and SPR data (collected by S.A.E., C.M.F. and J.M.). D.M.S. and S.D. analysed all data, with exception of SPR data (analysed by C.M.F.). D.M.S., S.A.E. and S.D. cloned plasmids and prepared cell lines. S.D. collected and analysed in vitro protocell measurements. D.M.S. collected and analysed all in vivo imaging data. D.M.S., M.Z. and M.N. collected and analysed photobleaching experiment data. T.K. analysed photobleaching recovery and loss rates. D.M.S., D.F. and A.A. developed and executed ultracentrifugation protocol to purify synthetic RNPGs. D.M.S., D.R. and C.A.G. executed and analysed RNA-seq and next-generation sequencing experiments. D.M.S., S.D., S.A.E. M.Z., J.S. and J.P. purified protein for characterization. D.M.S. and Y.D. performed and analysed in vivo growth assays. D.M.S., S.D. and A.C. wrote the manuscript. All the authors read and contributed revisions. All the authors contributed to discussions. A.C. supervised the work and acquired funding.

Corresponding author

Correspondence to Ashutosh Chilkoti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Extended material and methods, Supplementary Tables 1–5, Supplementary Figs. 1–16, Supplementary Notes 1–3 and references.

Reporting Summary

Supplementary Code 1

Modified script to calculate TPM of RNA detected in RNA-seq.

Supplementary Table 1

Numerical source data for all plots in main text and selected supplementary figures.

Supplementary Table 6

Supplementary Table 7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, D.M., Deshpande, S., Eghtesadi, S.A. et al. Synthetic biomolecular condensates enhance translation from a target mRNA in living cells. Nat. Chem. 17, 448–456 (2025). https://doi.org/10.1038/s41557-024-01706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01706-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing