Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An open-shell Ir(II)/Ir(IV) redox couple outperforms an Ir(I)/Ir(III) pair in olefin isomerization

Abstract

Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for IrII complexes, as there is very limited information available regarding their application in catalysis. Here we show that a family of IrII metalloradicals, featuring a C6H3-2,6-(OP(tBu)2)2 (POCOP) pincer ligand, effectively catalyses olefin isomerization—a key step in alkane metathesis—exhibiting up to 20 times higher activity than their IrI counterparts. Computational studies reveal that the IrII/IrIV redox cycling enables faster kinetics than the traditional IrI/IrIII pathway owing to reduced barriers for the oxidative addition and reductive elimination steps. Thus, this study presents a redox catalyst involving an IrII/IrIV pair, highlighting the capabilites of precious-metal systems that extend beyond traditional redox cycles. These findings emphasize the need for expanding catalytic design principles, especially for platinum-group metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Closed-shell versus open-shell catalytic cycle for a mononuclear iridium catalyst.
Fig. 2: Synthesis and characterization of IrII complexes.
Fig. 3: Mechanism for olefin isomerization comparing IrI versus IrII.
Fig. 4: Activation strain and EDAs of the C–H oxidative addition step.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2352734 (2·BF4), 2352735 (2·NTf2), 2352737 ([2·C2H4][BArF]) and 2352737 (2·Cl). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Atomic coordinates of the optimized computational models are provided in Supplementary Data 15. Source data are provided with this paper.

References

  1. Hartwig, J. Organotransition Metal Chemistry: From Bonding to Catalysis (Univ. Science Books, 2010).

  2. Crabtree, R. H. Organometallic Chemistry of the transition metals (Wiley, 1994).

  3. Bochmann, M. Organometallics and Catalysis: An Introduction (Oxford Univ. Press, 2015).

  4. Blythe, I. M. et al. Characterization and reactivity of copper(II) and copper(III) σ-aryl intermediates in aminoquinoline-directed C–H functionalization. J. Am. Chem. Soc. 145, 18253–18259 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Bour, J. R. et al. Carbon–carbon bond-forming reductive elimination from isolated nickel(III) complexes. J. Am. Chem. Soc. 138, 16105–16111 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Bouley, B. S., Tang, F., Bae, D. Y. & Mirica, L. M. C. – H bond activation via concerted metalation–deprotonation at a palladium(III) center. Chem. Sci. 14, 3800–3808 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Na, H. & Mirica, L. M. Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand. Nat. Commun. 13, 1313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, Q., Richmond, T. G., Trogler, W. C. & Basolo, F. Mechanism of carbon monoxide substitution in a metal radical: vanadium hexacarbonyl. J. Am. Chem. Soc. 104, 4032–4034 (1982).

    Article  CAS  Google Scholar 

  9. Shi, Q. Z., Richmond, T. G., Trogler, W. C. & Basolo, F. Mechanism of carbon monoxide substitution in metal carbonyl radicals: vanadium hexacarbonyl and its phosphine-substituted derivatives. J. Am. Chem. Soc. 106, 71–76 (1984).

    Article  CAS  Google Scholar 

  10. Roecker, L. & Meyer, T. J. Hydride transfer in the oxidation of formate ion by [(Bpy)2(Py)Ru(O)]2. J. Am. Chem. Soc. 108, 4066–4073 (1986).

    Article  CAS  Google Scholar 

  11. Hood, D. M. et al. Highly active cationic cobalt(II) hydroformylation catalysts. Science 367, 542–548 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Hood, D. M., Johnson, R. A., Vinyard, D. J., Fronczek, F. R. & Stanley, G. G. Cationic cobalt(II) bisphosphine hydroformylation catalysis: in situ spectroscopic and reaction studies. J. Am. Chem. Soc. 145, 19715–19726 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Königsmann, M. et al. Metalloenzyme‐inspired catalysis: selective oxidation of primary alcohols with an iridium–aminyl‐radical complex. Angew. Chem. Int. Ed. 46, 3567–3570 (2007).

    Article  Google Scholar 

  14. Tran, G. N., Bouley, B. S. & Mirica, L. M. Isolation and characterization of heteroleptic mononuclear palladium(I) complexes. J. Am. Chem. Soc. 144, 20008–20015 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Hetterscheid, D. G. H. & de Bruin, B. Open-shell rhodium and iridium species in (catalytic) oxygenation reactions. J. Mol. Catal. A 251, 291–296 (2006).

    Article  CAS  Google Scholar 

  16. de Bruin, Bas et al. Dioxygen activation by a mononuclear IrII–ethene complex. Angew. Chem. Int. Ed. 41, 2135–2135 (2002).

    Article  Google Scholar 

  17. Liu, Z. et al. Reduction of quinones by NADH catalyzed by organoiridium complexes. Angew. Chem. Int. Ed. 52, 4194–4197 (2013).

    Article  CAS  Google Scholar 

  18. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Powers, D. C. & Ritter, T. Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroatom bond formation. Nat. Chem. 1, 302–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Deprez, N. R. & Sanford, M. S. Synthetic and mechanistic studies of Pd-catalyzed C–H arylation with diaryliodonium salts: evidence for a bimetallic high oxidation state Pd intermediate. J. Am. Chem. Soc. 131, 11234–11241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hou, Z., Koizumi, T., Fujita, A., Yamazaki, H. & Wakatsuki, Y. The binuclear iridium(II) hydride complex [(C5Me5)Ir(µ-H)]2: a novel base for reversible deprotonation of acidic organic compounds and a unique catalyst for C–C bond cleavage of aromatic 1,2-diols and Michael additions. J. Am. Chem. Soc. 123, 5812–5813 (2001).

  23. Mendel, M., Gnägi, L., Dabranskaya, U. & Schoenebeck, F. Rapid and modular access to vinyl cyclopropanes enabled by air‐stable palladium(I) dimer catalysis. Angew. Chem. Int. Ed. 62, e2022111 (2023).

    Article  Google Scholar 

  24. Puschmann, F. F., Grützmacher, H. & de Bruin, B. Rhodium(0) metalloradicals in binuclear C–H activation. J. Am. Chem. Soc. 132, 73–75 (2009).

    Article  Google Scholar 

  25. Chan, K. S., Li, X. Z., Dzik, W. I. & de Bruin, B. Carbon–carbon bond activation of 2,2,6,6-tetramethyl-piperidine-1-oxyl by a RhII metalloradical: a combined experimental and theoretical study. J. Am. Chem. Soc. 130, 2051–2061 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Krämer, T. et al. Stability and C–H bond activation reactions of palladium(I) and platinum(I) metalloradicals: carbon-to-metal h-atom transfer and an organometallic radical rebound mechanism. J. Am. Chem. Soc. 145, 14087–14100 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tepaske, M. A. et al. C–H bond activation by iridium(III) and iridium(IV) oxo complexes. Angew. Chem. Int. Ed. 63, e202316729 (2024).

    Article  CAS  Google Scholar 

  28. Scheibel, M. G. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nat. Chem. 4, 552–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Scheibel, M. G. et al. Synthesis and reactivity of a transient, terminal nitrido complex of rhodium. J. Am. Chem. Soc. 135, 17719–17722 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Hidalgo, N., Moreno, J. J., Garcia-Rubio, I. & Campos, J. Enhanced dihydrogen activation by mononuclear iridium(II) compounds: a mechanistic study. Angew. Chem. Int. Ed. 134, e202206831 (2022).

    Article  Google Scholar 

  31. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312, 257–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Biswas, S. et al. Olefin isomerization by iridium pincer catalysts. experimental evidence for an η3-allyl pathway and an unconventional mechanism predicted by DFT calculations. J. Am. Chem. Soc. 134, 13276–13295 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Rimoldi, M., Fodor, D., van Bokhoven, J. A. & Mezzetti, A. Catalytic hydrogenation of liquid alkenes with a silica-grafted hydride pincer iridium(III) complex: support for a heterogeneous mechanism. Catal. Sci. Tech. 5, 4575–4586 (2015).

    Article  CAS  Google Scholar 

  34. MacInnis, M. C. et al. Cationic two-coordinate complexes of Pd(I) and Pt(I) have longer metal–ligand bonds than their neutral counterparts. Cell 1, 902–920 (2016).

    CAS  Google Scholar 

  35. Yang, W. et al. Switching between hydrogenation and olefin transposition catalysis via silencing NH cooperativity in Mn(I) pincer complexes. ACS Catal. 12, 10818–10825 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Y. et al. An agostic iridium pincer complex as a highly efficient and selective catalyst for monoisomerization of 1-alkenes to trans-2-alkenes. Angew. Chem. Int. Ed. 56, 1614 (2017).

  37. Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. 44, 4302–4320 (2005).

    Article  CAS  Google Scholar 

  38. Blackmond, D. G. et al. Investigations of Pd-catalyzed ArX coupling reactions informed by reaction progress kinetic analysis. J. Org. Chem. 71, 4711–4722 (2006).

    Article  PubMed  Google Scholar 

  39. Burés, J. & Nielsen, C. D.-T. Visual kinetic analysis. Chem. Sci. 10, 348–353 (2019).

    Article  PubMed  Google Scholar 

  40. Kozuch, S. & Shaik, S. A Combined kinetic–quantum mechanical model for assessment of catalytic cycles: application to cross-coupling and Heck reactions. J. Am. Chem. Soc. 128, 3355–3365 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kozuch, S. & Shaik, S. Kinetic–quantum chemical model for catalytic cycles: the Haber–Bosch process and the effect of reagent concentration. J. Phys. Chem. A 112, 6032–6041 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Uhe, A., Kozuch, S. & Shaik, S. Automatic analysis of computed catalytic cycles. J. Comput. Chem. 32, 978–985 (2010).

    Article  PubMed  Google Scholar 

  43. Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Fernández, I. & Bickelhaupt, F. M. The activation strain model and molecular orbital theory. Chem. Soc. Rev. 43, 4953–4967 (2014).

    Article  PubMed  Google Scholar 

  45. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction–activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article  CAS  Google Scholar 

  46. Fernández, I. in Discovering the Future of Molecular Sciences (ed. Pignataro, B.), 165–187 (Wiley, 2014).

  47. Bickelhaupt, F. M. & Baerends, E. J. in Reviews in Computational Chemistry Vol. 15 (eds Lipkowitz, K. B. & Boyd, D. B.) 1–86 (Wiley, 2000).

  48. von Hopffgarten, M. & Frenking, G. Energy decomposition analysis. WIREs Comput. Mol. Sci. 2, 43–62 (2012).

    Article  Google Scholar 

  49. Fernández, I. in Applied Theoretical Organic Chemistry (ed. Tantillo, D. J.) 191–226 (World Scientific, 2018).

  50. Wang, Y., Qin, C., Jia, X., Leng, X. & Huang, Z. An agostic iridium pincer complex as a highly efficient and selective catalyst for monoisomerization of 1‐alkenes to trans‐2‐alkenes. Angew. Chem. Int. Ed. 56, 1614–1618 (2017).

    Article  CAS  Google Scholar 

  51. Stegner, P. et al. Metallic barium: a versatile and efficient hydrogenation catalyst. Angew. Chem. Int. Ed. 60, 4252–4258 (2020).

    Article  Google Scholar 

  52. Kumari, A., Gholap, S. P. & Fernandes, R. A. Tandem IBX‐promoted primary alcohol oxidation/opening of intermediate β,γ‐diolcarbonate aldehydes to (E)‐γ‐hydroxy‐α,β‐enals. Chem. Asian J. 14, 2278–2290 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Reiter, D. et al. Disilene–silylene interconversion: a synthetically accessible acyclic bis(silyl)silylene. J. Am. Chem. Soc. 141, 13536–13546 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Martin, J. et al. Highly active superbulky alkaline earth metal amide catalysts for hydrogenation of challenging alkenes and aromatic rings. Angew. Chem. Int. Ed. 59, 9102–9112 (2020).

    Article  CAS  Google Scholar 

  55. Cahiez, G., Gager, O., Buendia, J. & Patinote, C. Iron thiolate complexes: efficient catalysts for coupling alkenyl halides with alkyl Grignard reagents. Chem. Eur. J. 18, 5860–5863 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Y.-G. et al. Regioselective Ni-catalyzed carboxylation of allylic and propargylic alcohols with carbon dioxide. Org. Lett. 19, 2969–2972 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project that gave rise to these results received the support of a fellowship from ‘laCaixa’ Foundation (ID 100010434; fellowship code B005930; A.P.-M.). This work was also supported by the Spanish MCIN/AEI/10.13039/501100011033 (grants PID2022-139782NB-I00, J.C.; PID2022-139318NB-I00, I.F.; TED2021-132225B-I00, J.C. and RED2022-134287-T, J.C. and I.F.). We acknowledge support from the European Commission under Marie Skłodowska-Curie fellowships, project numbers 101067947 (TRUFA, J.J.M.) and 101109769 (READHY, N.H.). We acknowledge the use of CESGA computational facilities. T. J. Gerard and P. L. Holland are acknowledged for their help with EPR spectroscopy. E. Carmona is acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.P.-M. and N.H. carried out the experimental work: synthesis and characterization of new complexes, reactivity studies, catalytic and kinetic investigations and substrate scope. A.P.-M., J.J.M. and I.F. carried out the computational studies. J.C. supervised the overall work and wrote the manuscript with participation of all authors.

Corresponding author

Correspondence to Jesús Campos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Monitoring olefin isomerization with IrI and IrII.

Conversion of 1-octene at 125 °C (dashed line) or 1-hexene at 70 °C (solid line) over time mediated by 1 (blue) and after adding 1 equivalent of Ag[BArF] (pink).

Extended Data Fig. 2 Computational mechanistic profile for N2/olefin ligand substitution in IrI vs IrII.

Free energy profile for the dissociation of N2 and coordination of 1-hexene. For clarity, only the structures for the IrII are drawn. Level of theory: PBE0-D3/LANL2TZ(Ir) augmented by a diffuse d-type function (exponent=0.07645)/6-311 G(d,p) all other atoms.

Extended Data Fig. 3 Kinetic profiles.

a) Initial rates plot: Ln of the initial rate, v0, of the isomerization of 1-hexene (M) vs Ln of the initial concentration of 1-hexene, v0 in M·s-1, [1-hexene]0 in M. b) Eyring plot: Ln of k/T vs 1/T·103, k in s-1·M-1, T in K, t in s.

Supplementary information

Supplementary Information

Data relating to the characterization of iridium compounds, NMR, UV–vis and EPR spectra, kinetic and mechanistic studies, crystal structure determination and computational studies.

Supplementary Data 1

Crystallographic data for structure 2·BF4 (CCDC 2352734).

Supplementary Data 2

Crystallographic data for structure 2·NTf2 (CCDC 2352735).

Supplementary Data 3

Crystallographic data for structure 2·C2H4][BArF] ((CCDC 2352736).

Supplementary Data 4

Crystallographic data for structure 2·Cl (CCDC 2352737).

Supplementary Data 5

Atomic coordinates of the optimized computational model.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Extended Data Fig./Table 1

Source data for Extended Data Fig. 1.

Source Data Extended Data Fig./Table 3

Source data for Extended Data Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pita-Milleiro, A., Hidalgo, N., Moreno, J.J. et al. An open-shell Ir(II)/Ir(IV) redox couple outperforms an Ir(I)/Ir(III) pair in olefin isomerization. Nat. Chem. 17, 606–613 (2025). https://doi.org/10.1038/s41557-024-01722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01722-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing