Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aryl halide cross-coupling via formate-mediated transfer hydrogenation

Abstract

Transfer hydrogenation is widely practised across all segments of chemical industry, yet its application to aryl halide reductive cross-coupling is undeveloped because of competing hydrogenolysis. Here, exploiting the distinct reactivity of PdI species, an efficient catalytic system for the reductive cross-coupling of activated aryl bromides with aryl iodides via formate-mediated hydrogen transfer is described. These processes display orthogonality with respect to Suzuki and Buchwald–Hartwig couplings, as pinacol boronates and anilines are tolerated and, owing to the intervention of chelated intermediates, are effective for challenging 2-pyridyl systems. Experimental and computational studies corroborate a unique catalytic cycle for reductive cross-coupling where the PdI precatalyst, [Pd(I)(PtBu3)]2, is converted to the dianionic species, [Pd2I4][NBu4]2, from which aryl halide oxidative addition is more facile. Rapid, reversible Pd-to-Pd transmetallation delivers mixtures of iodide-bridged homo- and hetero-diarylpalladium dimers. The hetero-diarylpalladium dimers are more stable and have lower barriers to reductive elimination, promoting high levels of cross-selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of reductive cross-couplings of aryl halides and optimization of the formate-mediated process.
Fig. 2: Experiments corroborating [Pd2I4][NBu4]2 as the active catalyst.
Fig. 3: Computational and experimental studies of oxidative addition and intermolecular transmetallation.
Fig. 4: Computed reaction energy profiles of intramolecular transmetallation and reductive elimination.
Fig. 5: General mechanism of formate-mediated cross-electrophile reductive coupling catalysed by [Pd2I4][NBu4]2.

Similar content being viewed by others

Data availability

All data relating to materials and methods, experimental procedures, mechanistic studies, characterization data for all new compounds (1H NMR, 13C NMR, 19F NMR, 31P NMR, IR and HRMS), computational details and additional computational results are available in the Supplementary Information. Crystallographic data for [Pd2I6][NBu4]2 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number 2380764. Copies of data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seechurn, C. C. C. J., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    Google Scholar 

  3. Li, H., Seechurn, C. C. C. J. & Colacot, T. J. Development of preformed Pd catalysts for cross-coupling reactions, beyond the 2010 Nobel Prize. ACS Catal. 2, 1147–1164 (2012).

    CAS  Google Scholar 

  4. Dumrath, A., Lübbe, C. & Beller, M. in Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments 1st edn (ed. Molnár, Á.) 445–489 (Wiley, 2013).

  5. Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).

    CAS  PubMed  Google Scholar 

  6. Shaughnessy, K. H. Development of palladium precatalysts that efficiently generate LPd(0) active species. Isr. J. Chem. 60, 180–194 (2020).

    CAS  Google Scholar 

  7. Firsan, S. J., Sivakumar, V. & Colacot, T. J. Emerging trends in cross-coupling: twelve-electron-based L1Pd(0) catalysts, their mechanism of action, and selected applications. Chem. Rev. 122, 16983–17027 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    CAS  PubMed  Google Scholar 

  9. Durandetti, M., Gosmini, C. & Périchon, J. Ni-catalyzed activation of α-chloroesters: a simple method for the synthesis of α-arylesters and β-hydroxyesters. Tetrahedron 63, 1146–1153 (2007).

    CAS  Google Scholar 

  10. Gosmini, C., Bassene-Ernst, C. & Durandetti, M. Synthesis of functionalized 2-arylpyridines from 2-halopyridines and various aryl halides via a nickel catalysis. Tetrahedron 65, 6141–6146 (2009).

    CAS  Google Scholar 

  11. Everson, D. A., Shrestha, R. & Weix, D. J. Nickel-catalyzed reductive cross-coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 132, 920–921 (2010).

    CAS  PubMed  Google Scholar 

  12. Yu, X., Yang, T., Wang, S., Xu, H. & Gong, H. Nickel-catalyzed reductive cross-coupling of unactivated alkyl halides. Org. Lett. 13, 2138–2141 (2011).

    CAS  PubMed  Google Scholar 

  13. Wang, S., Qian, Q. & Gong, H. Nickel-catalyzed reductive coupling of aryl halides with secondary alkyl bromides and allylic acetate. Org. Lett. 14, 3352–3355 (2012).

    CAS  PubMed  Google Scholar 

  14. Qian, Q. et al. Nickel-catalyzed reductive cross-coupling of aryl halides. Synlett 24, 619–624 (2013).

    CAS  Google Scholar 

  15. Amatore, M. & Gosmini, C. Efficient cobalt-catalyzed formation of unsymmetrical biaryl compounds and its application in the synthesis of a sartan intermediate. Angew. Chem. Int. Ed. 47, 2089–2092 (2008).

    CAS  Google Scholar 

  16. Bégouin, J.-M. & Gosmini, C. Cobalt-catalyzed cross-coupling between in situ prepared arylzinc halides and 2-chloropyrimidine or 2-chloropyrazine. J. Org. Chem. 74, 3221–3224 (2009).

    PubMed  Google Scholar 

  17. Ackerman, L. K. G., Lovell, M. M. & Weix, D. J. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. Nature 524, 454–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanna, L. E. & Jarvo, E. R. Selective cross-electrophile coupling by dual catalysis. Angew. Chem. Int. Ed. 54, 15618–15620 (2015).

    CAS  Google Scholar 

  19. Komeyama, K., Ohata, R., Kiguchi, S. & Osaka, I. Highly nucleophilic vitamin B12-assisted nickel-catalysed reductive coupling of aryl halides and non-activated alkyl tosylates. Chem. Commun. 53, 6401–6404 (2017).

    CAS  Google Scholar 

  20. Gosmini, C. & Moncomble, A. Cobalt-catalyzed cross-coupling reactions of aryl halides. Isr. J. Chem. 50, 568–576 (2010).

    CAS  Google Scholar 

  21. Knappke, C. E. I. et al. Reductive cross-coupling reactions between two electrophiles. Chem. Eur. J. 20, 6828–6842 (2014).

    CAS  PubMed  Google Scholar 

  22. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, X., Dai, Y. & Gong, H. Nickel-catalyzed reductive couplings. Top. Curr. Chem. 374, 61–89 (2016).

    Google Scholar 

  24. Poremba, K. E., Dibrell, S. E. & Reisman, S. E. Nickel-catalyzed enantioselective reductive cross-coupling reactions. ACS Catal. 10, 8237–8246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Charboneau, D. J., Hazari, N., Huang, H., Uehling, M. R. & Zultanski, S. L. Homogeneous organic electron donors in nickel-catalyzed reductive transformations. J. Org. Chem. 87, 7589–7609 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Anka-Lufford, L. L., Huihui, K. M. M., Gower, N. J., Ackerman, L. K. G. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling with organic reductants in non-amide solvents. Chem. Eur. J. 22, 11564–11567 (2016).

    CAS  PubMed  Google Scholar 

  27. Shu, W. et al. Ni-catalyzed reductive dicarbofunctionalization of nonactivated alkenes: Scope and mechanistic insights. J. Am. Chem. Soc. 141, 13812–13821 (2019).

    CAS  PubMed  Google Scholar 

  28. Charboneau, D. J. et al. Tunable and practical homogeneous organic reductants for cross-electrophile coupling. J. Am. Chem. Soc. 143, 21024–21036 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Geng, S. et al. Recent progress in transition-metal-catalyzed reductive cross-coupling reactions using diboron reagents as reductants. ACS Catal. 13, 15469–15480 (2023).

    CAS  Google Scholar 

  30. Xu, H., Zhao, C., Qian, Q., Deng, W. & Gong, H. Nickel-catalyzed cross-coupling of unactivated alkyl halides using bis(pinacolato)diboron as reductant. Chem. Sci. 4, 4022–4029 (2013).

    CAS  Google Scholar 

  31. Liang, Z., Xue, W., Lin, K. & Gong, H. Nickel-catalyzed reductive methylation of alkyl halides and acid chlorides with methyl p-tosylate. Org. Lett. 16, 5620–5623 (2014).

    CAS  PubMed  Google Scholar 

  32. Lu, X. et al. Nickel-catalyzed defluorinative reductive cross-coupling of gem-difluoroalkenes with unactivated secondary and tertiary alkyl halides. J. Am. Chem. Soc. 139, 12632–12637 (2017).

    CAS  PubMed  Google Scholar 

  33. Ishida, N., Masuda, Y., Sun, F., Kamae, Y. & Murakami, M. A strained vicinal diol as a reductant for coupling of organyl halides. Chem. Lett. 48, 1042–1045 (2019).

    CAS  Google Scholar 

  34. Wang, L., Zhang, Y., Liu, L. & Wang, Y. Palladium-catalyzed homocoupling and cross-croupling reactions of aryl halides in poly(ethylene glycol). J. Org. Chem. 71, 1284–1287 (2006).

    CAS  PubMed  Google Scholar 

  35. Yi, L., Ji, T., Chen, K.-Q., Chen, X.-Y. & Rueping, M. Nickel-catalyzed reductive cross-couplings: new opportunities for carbon-carbon bond formations through photochemistry and electrochemistry. CCS Chem. 4, 9–30 (2022).

    CAS  Google Scholar 

  36. Liu, Y., Li, P., Wang, Y. & Qiu, Y. Electroreductive cross-electrophile coupling (eXEC) reactions. Angew. Chem. Int. Ed. 62, e202306679 (2023).

    CAS  Google Scholar 

  37. Twilton, J. et al. Quinone-mediated hydrogen anode for non-aqueous reductive electrosynthesis. Nature 623, 71–76 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maiti, S. et al. Light-induced Pd catalyst enables C(sp2)–C(sp2) cross-electrophile coupling bypassing the demand for transmetalation. Nat. Catal. 7, 285–294 (2024).

    CAS  Google Scholar 

  39. Duan, Z., Li, W. & Lei, A. Nickel-catalyzed reductive cross-coupling of aryl bromides with alkyl bromides: Et3N as the terminal reductant. Org. Lett. 18, 4012–4015 (2016).

    CAS  PubMed  Google Scholar 

  40. Dewanji, A., Bülow, R. F. & Rueping, M. Photoredox/nickel dual-catalyzed reductive cross coupling of aryl halides using an organic reducing agent. Org. Lett. 22, 1611–1617 (2020).

    CAS  PubMed  Google Scholar 

  41. Schwartz, L. A., Spielmann, K., Swyka, R. A., Xiang, M. & Krische, M. J. Formate-mediated cross-electrophile reductive coupling of aryl iodides and bromopyridines. Isr. J. Chem. 61, 298–301 (2021).

    CAS  Google Scholar 

  42. Mukhopadhyay, S., Rothenberg, G., Qafisheh, N. & Sasson, Y. Supported phase-transfer catalysts as selective agents in biphenyl synthesis from haloaryls. Tetrahedron Lett. 42, 6117–6119 (2001).

    CAS  Google Scholar 

  43. Ngai, M.-Y., Kong, J.-R. & Krische, M. J. Hydrogen-mediated C–C bond formation: a broad new concept in catalytic C–C coupling. J. Org. Chem. 72, 1063–1072 (2007).

    CAS  PubMed  Google Scholar 

  44. Nguyen, K. D. et al. Metal-catalyzed reductive coupling of olefin-derived nucleophiles: reinventing carbonyl addition. Science 354, aah5133 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Santana, C. G. & Krische, M. J. From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present and future. ACS Catal. 11, 5572–5585 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Swyka, R. A., Zhang, W., Richardson, J., Ruble, J. C. & Krische, M. J. Rhodium-catalyzed aldehyde arylation via formate-mediated transfer hydrogenation: beyond metallic reductants in Grignard/Nozaki–Hiyama–Kishi-type addition. J. Am. Chem. Soc. 141, 1828–1832 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Swyka, R. A. et al. Conversion of aldehydes to branched or linear ketones via regiodivergent rhodium-catalyzed vinyl bromide reductive coupling-redox isomerization mediated by formate. J. Am. Chem. Soc. 141, 6864–6868 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shuler, W. G., Swyka, R. A., Schempp, T. T., Spinello, B. J. & Krische, M. J. Vinyl triflate-aldehyde reductive coupling-redox isomerization mediated by formate: rhodium-catalyzed ketone synthesis in the absence of stoichiometric metals. Chem. Eur. J. 25, 12517–12520 (2019).

    CAS  PubMed  Google Scholar 

  49. Chang, Y.-H., Shen, W., Shezaf, J. Z., Ortiz, E. & Krische, M. J. Palladium(I)-iodide-catalyzed deoxygenative Heck reaction of vinyl triflates: A formate-mediated cross-electrophile reductive coupling with cine-substitution. J. Am. Chem. Soc. 145, 22890–22895 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Santana, C. G., Teoh, Y. S., Evarts, M. M., Shezaf, J. Z. & Krische, M. J. Formate-mediated reductive cross-coupling of vinyl halides and aryl iodides: cine-substitution via palladium(I) catalysis. Org. Lett. 26, 7055–7059 (2024).

    CAS  PubMed  Google Scholar 

  51. Billingsley, K. L. & Buchwald, S. L. A general and efficient method for the Suzuki–Miyaura coupling of 2-pyridyl nucleophiles. Angew. Chem. Int. Ed. 47, 4695–4698 (2008).

    CAS  Google Scholar 

  52. Dick, G. R., Woerly, E. M. & Burke, M. D. A general solution for the 2-pyridyl problem. Angew. Chem. Int. Ed. 51, 2667–2672 (2012).

    CAS  Google Scholar 

  53. Cox, P. A., Leach, A. G., Campbell, A. D. & Lloyd-Jones, G. C. Protodeboronation of heteroaromatic, vinyl, and cyclopropyl boronic acids: pH-rate profiles, autocatalysis, and disproportionation. J. Am. Chem. Soc. 138, 9145–9157 (2016).

    CAS  PubMed  Google Scholar 

  54. Cook, X. A. F., de Gombert, A., McKnight, J., Pantaine, L. R. E. & Willis, M. C. The 2-pyridyl problem: challenging nucleophiles in cross-coupling arylations. Angew. Chem. Int. Ed. 60, 11068–11091 (2021).

    CAS  Google Scholar 

  55. Wang, D., Izawa, Y. & Stahl, S. S. Pd-catalyzed aerobic oxidative coupling of arenes: evidence for transmetalation between two Pd(II)-aryl intermediates. J. Am. Chem. Soc. 136, 9914–9917 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pérez-Iglesias, M., Lozano-Lavilla, O. & Casares, J. A. [Cu(C6Cl2F3)(tht)]4: an extremely efficient catalyst for the aryl scrambling between palladium complexes. Organometallics 38, 739–742 (2019).

    Google Scholar 

  57. Lin, Z., Oliveira, J. C. A., Scheremetjew, A. & Ackermann, L. Palladium-catalyzed electrooxidative double C–H arylation. J. Am. Chem. Soc. 146, 228–239 (2024).

    CAS  PubMed  Google Scholar 

  58. Pinder, A. R. The hydrogenolysis of organic halides. Synthesis 1980, 425–452 (1980).

    Google Scholar 

  59. Urbano, F. J. & Marinas, J. M. Hydrogenolysis of organohalogen compounds over palladium supported catalysts. J. Mol. Catal. A 173, 329–345 (2001).

    CAS  Google Scholar 

  60. Alonso, F., Beletskaya, I. P. & Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4092 (2002).

    CAS  PubMed  Google Scholar 

  61. Schroeter, F., Soellner, J. & Strassner, T. Cross-coupling catalysis by an anionic palladium complex. ACS Catal. 7, 3004–3009 (2017).

    CAS  Google Scholar 

  62. Hruszkewycz, D. P., Balcells, D., Guard, L. M., Hazari, N. & Tilset, M. Insight into the efficiency of cinnamyl-supported precatalysts for the Suzuki–Miyaura reaction: observation of Pd(I) dimers with bridging allyl ligands during catalysis. J. Am. Chem. Soc. 136, 7300–7316 (2014).

    CAS  PubMed  Google Scholar 

  63. Fricke, C., Sperger, T., Mendel, M. & Schoenebeck, F. Catalysis with palladium(I) dimers. Angew. Chem. Int. Ed. 60, 3355–3366 (2021).

    CAS  Google Scholar 

  64. Bonney, K. J., Proutiere, F. & Schoenebeck, F. Dinuclear Pd(I) complexes—solely precatalysts? Demonstration of direct reactivity of a Pd(I) dimer with an aryl iodide. Chem. Sci. 4, 4434–4439 (2013).

    CAS  Google Scholar 

  65. Maitlis, P. M., Haynes, A., James, B. R., Catellani, M. & Chiusoli, G. P. Iodide effects in transition metal catalyzed reactions. Dalton Trans. 2004, 3409–3419 (2004).

    Google Scholar 

  66. Fagnou, K. & Lautens, M. Halide effects in transition metal catalysis. Angew. Chem. Int. Ed. 41, 26–47 (2002).

    CAS  Google Scholar 

  67. Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405–408 (2019).

    CAS  PubMed  Google Scholar 

  68. Milner, P. J. et al. Investigating the dearomative rearrangement of biaryl phosphine-ligated Pd(II) complexes. J. Am. Chem. Soc. 134, 19922–19934 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vicente, J., Arcas, A., Juliá-Hernández, F. & Bautista, D. Synthesis of a palladium(IV) complex by oxidative addition of an aryl halide to palladium(II) and its use as precatalyst in a C–C coupling reaction. Angew. Chem. Int. Ed. 50, 6896–6899 (2011).

    CAS  Google Scholar 

  70. Dang, Y. et al. The mechanism of a ligand-promoted C(sp3)–H activation and arylation reaction via palladium catalysis: theoretical demonstration of a Pd(II)/Pd(IV) redox manifold. J. Am. Chem. Soc. 137, 2006–2014 (2015).

    CAS  PubMed  Google Scholar 

  71. Whitehurst, W. G., Blackwell, J. H., Hermann, G. N. & Gaunt, M. J. Carboxylate-assisted oxidative addition to aminoalkyl Pd(II) complexes: C(sp3)-H arylation of alkylamines by distinct Pd(II)/Pd(IV) pathway. Angew. Chem. Int. Ed. 58, 9054–9059 (2019).

    CAS  Google Scholar 

  72. Manna, K. & Jana, R. Palladium-catalyzed cross-electrophile coupling between aryl diazonium salt and aryl iodide/diaryliodonium salt in H2O–EtOH. Org. Lett. 25, 341–346 (2023).

    CAS  PubMed  Google Scholar 

  73. Roy, A. H. & Hartwig, J. F. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(II) halide complexes. J. Am. Chem. Soc. 125, 13944–13945 (2003).

    CAS  PubMed  Google Scholar 

  74. Carrow, B. P. & Hartwig, J. F. Ligandless, anionic, arylpalladium halide intermediates in the Heck reaction. J. Am. Chem. Soc. 132, 79–81 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Galardon, E. et al. Profound steric control of reactivity in aryl halide addition to bisphosphane palladium(0) complexes. Angew. Chem. Int. Ed. 41, 1760–1763 (2002).

    CAS  Google Scholar 

  76. Shekhar, S. & Hartwig, J. F. Distinct electronic effects on reductive eliminations of symmetrical and unsymmetrical bis-aryl platinum complexes. J. Am. Chem. Soc. 126, 13016–13027 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Robert A. Welch Foundation (F-0038) and the National Institutes of Health (NIH)-National Institute of General Medical Sciences (NIGMS) (RO1-GM069445 and R35 GM128779) are acknowledged for partial support of this research. Genentech is acknowledged for summer predoctoral internship support (Y.C.). N.S.T. is supported in part by the NIH-NIGMS (R35GM-133566). Instrumentation for the University of Minnesota (UMN) Chemistry NMR facility was supported from a grant through the NIH (S10OD011952) and the UMN Department of Chemistry Mass Spectrometry Laboratory is supported by the Office of the Vice President for Research, College of Science and Engineering and the Department of Chemistry at UMN, as well as the National Science Foundation (NSF) (CHE-1336940). X-ray diffraction experiments were performed by A. Lovstedt and G. Murphy with a diffractometer purchased through a grant from NSF/MRI (1229400) and the UMN. DFT calculations were carried out at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Co-ordination Ecosystem: Services and Support (ACCESS) programme, supported by NSF award numbers OAC-2117681, OAC-1928147 and OAC-1928224. We thank M. Huestis, M. Ashley and C. Stivala for helpful scientific discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.C., Y.-H.C., Z.J.D. and S.L. designed the project under the guidance of N.A.W. and M.J.K. Y.C., Y.-H.C., Z.H.S., Z.J.D. and S.L. carried out experimental work and mechanistic studies notwithstanding Supplementary Information section XI. K.P.Q. performed calculations under the guidance of P.L. N.S.T. carried out mechanistic studies described in Supplementary Information section XI under the guidance of J.M.H. N.N. performed the HTE experiments. P.L. and M.J.K. composed the manuscript with input from all authors.

Corresponding authors

Correspondence to Jessica M. Hoover, Nicholas A. White, Peng Liu or Michael J. Krische.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Corinne Gosmini, Kevin Shaughnessy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, detailed experimental procedures, optimization, characterization and computational data.

Supplementary Data 1

Crystallographic data for compound [Pd2I6][NBu4]2; CCDC reference 2380764.

Supplementary Data 2

Cartesian coordinates raw file for all computations.

Supplementary Data 3

Checkcif file for [Pd2I6][NBu4]2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y., Chang, YH., Quirion, K.P. et al. Aryl halide cross-coupling via formate-mediated transfer hydrogenation. Nat. Chem. 17, 710–718 (2025). https://doi.org/10.1038/s41557-024-01729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01729-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing