Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic difluorocarbene insertion enables access to fluorinated oxetane isosteres

This article has been updated

Abstract

Skeletal editing of heterocyclic building blocks offers an appealing way to expand the accessible chemical space by diversifying molecular scaffolds for drug discovery. Despite the recent boom in this area, catalytic strategies that directly introduce fluorine into the backbone of small-ring heterocycles remain rare owing to the challenges of strain-induced ring cleavage and defluorination. Here we describe a copper-catalysed approach for skeletal expansion of oxygen heterocycles by reaction with a difluorocarbene species generated in situ to induce carbon atom insertion. The α,α-difluoro-oxetane products are potential surrogates of oxetane, β-lactone and carbonyl pharmacophores on the basis of their computed molecular properties and electrostatic potential maps. The utility of this approach is highlighted by synthesis of various drug-like molecules and fluorinated isosteres of biologically active compounds. Experimental and computational investigations provide insight into the mechanism and the unique role of the copper catalyst in promoting both ring-opening and cyclization steps of the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance of small-ring heterocycles and reaction design.
Fig. 2: Reaction development and preliminary assessment of stability and physicochemical properties.
Fig. 3: Mechanistic investigations.
Fig. 4: Synthesis of fluorinated isosteres of biologically active molecules.

Similar content being viewed by others

Data availability

Crystallographic data are available free of charge from the Cambridge Crystallographic Data Centre under reference no. CCDC-2323644 (31). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are available in the main text or the Supplementary Information.

Change history

  • 28 February 2025

    In the second paragraph of the “Mechanistic studies” section, an additional citation to ref. 23 (Zeng, X., Li, Y., Min, Q.-Q., Xue, X.-S. & Zhang, X. Copper-catalysed difluorocarbene transfer enables modular synthesis. Nat. Chem.15, 1064–1073 (2023)) has been added alongside the text “which was first described by Zhang and co-workers”. This correction has been made to the HTML and PDF versions of the article.

References

  1. Hassner, A. Small Ring Heterocycles (Wiley-VCH, 1983).

  2. Rojas, J. J. & Bull, J. A. Oxetanes in drug discovery campaigns. J. Med. Chem. 66, 12697–12709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wuitschik, G. et al. Oxetanes in drug discovery: structural and synthetic insights. J. Med. Chem. 53, 3227–3246 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Wuitschik, G. et al. Oxetanes as promising modules in drug discovery. Angew. Chem. Int. Ed. 45, 7736–7739 (2006).

    Article  CAS  Google Scholar 

  5. Robinson, S. L., Christenson, J. K. & Wackett, L. P. Biosynthesis and chemical diversity of β-lactone natural products. Nat. Prod. Rep. 36, 458–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Baillie, P. A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. 55, 13408–13421 (2016).

    Article  CAS  Google Scholar 

  7. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Bauer, M. R. et al. Put a ring on it: application of small aliphatic rings in medicinal chemistry. RSC Med. Chem. 12, 448–471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grygorenko, O. O., Melnykov, K. P., Holovach, S. & Demchuk, O. Fluorinated cycloalkyl building blocks for drug discovery. ChemMedChem 17, e2022003 (2022).

    Article  Google Scholar 

  11. Holovach, S. et al. Effect of gem-difluorination on the key physicochemical properties relevant to medicinal chemistry: the case of functionalized cycloalkanes. Chem. Eur. J. 28, e202200331 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Ruyet, L. et al. Catalytic ring expanding difluorination: an enantioselective platform to access β,β-difluorinated carbocycles. Angew. Chem. Int. Ed. 63, e202403957 (2024).

    Article  CAS  Google Scholar 

  13. Zeng, Y. & Xia, Y. Rhodium-catalyzed regio- and diastereoselective [3 + 2] cycloaddition of gem-difluorinated cyclopropanes with internal olefins. Angew. Chem. Int. Ed. 62, e202307129 (2023).

    Article  CAS  Google Scholar 

  14. Patani, G. A. & LaVoie, E. J. Bioisosterism: a rational approach in drug design. Chem. Rev. 96, 3147–3176 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Sap, J. B. I. et al. Late-stage difluoromethylation: concepts, developments and perspective. Chem. Soc. Rev. 50, 8214–8247 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Conn, P. J. et al. Bicyclic triazole and pyrazole lactams as allosteric modulators of mglur5 receptors. International patent WO2012083224A1 (2012).

  17. Ikeda, S. & Sonoi, T. Process for producing 2,2,3,3-tetrafluorooxetane. International patent WO2005080365A1 (2005).

  18. Liang, T., Neumann, C. N. & Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 52, 8214–8264 (2013).

    Article  CAS  Google Scholar 

  19. Porco, J. A. & Schreiber, S. L. The Paterno-Büchi reaction. Compr. Org. Synth. 5, 151–192 (1991).

    Article  Google Scholar 

  20. Bull, J. A., Croft, R. A., Davis, O. A., Doran, R. & Morgan, K. F. Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem. Rev. 116, 12150–12233 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Okuma, K., Tanaka, Y., Kaji, S. & Ohta, H. Reaction of dimethyloxosulfonium methylide with epoxides. preparation of oxetanes. J. Org. Chem. 48, 5133–5134 (1983).

    Article  CAS  Google Scholar 

  22. Takahira, H. et al. Electrochemical C(sp3)–H fluorination. Synlett 30, 1178–1182 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng, X., Li, Y., Min, Q.-Q., Xue, X.-S. & Zhang, X. Copper-catalysed difluorocarbene transfer enables modular synthesis. Nat. Chem. 15, 1064–1073 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Padwa, A. & Hornbuckle, S. F. Ylide formation from the reaction of carbenes and carbenoids with heteroatom lone pairs. Chem. Rev. 91, 263–309 (1991).

    Article  CAS  Google Scholar 

  25. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reisenbauer, J. C., Green, O., Franchino, A., Finkelstein, P. & Morandi, B. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science 377, 1104–1109 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Kamitani, M. et al. Single–carbon atom transfer to α, β-unsaturated amides from N-heterocyclic carbenes. Science 379, 484–488 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, H. et al. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 381, 75–81 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Pearson, T. J. et al. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science 381, 1474–1479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Woo, J., Stein, C., Christian, A. H. & Levin, M. D. Carbon-to-nitrogen single-atom transmutation of azaarenes. Nature 623, 77–82 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Empel, C., Jana, S. & Koenigs, R. M. Advances in [1,2]-sigmatropic rearrangements of onium ylides via carbene transfer reactions. Synthesis 53, 4567–4587 (2021).

    Article  CAS  Google Scholar 

  32. Parker, R. E. & Isaacs, N. S. Mechanisms of epoxide reactions. Chem. Rev. 59, 737–799 (1959).

    Article  CAS  Google Scholar 

  33. Mack, D. J., Batory, L. A. & Njardarson, J. T. Intermolecular oxonium ylide mediated synthesis of medium-sized oxacycles. Org. Lett. 14, 378–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Stevens, T. et al. On the mechanism of the Stevens rearrangement. Synthesis 52, 21–26 (2020).

    Article  Google Scholar 

  35. Hayashi, H. et al. In silico reaction screening with difluorocarbene for N-difluoroalkylative dearomatization of pyridines. Nat. Synth. 1, 804–814 (2022).

    Article  CAS  Google Scholar 

  36. Su, J., Ma, X., Ou, Z. & Song, Q. Deconstructive functionalizations of unstrained carbon-nitrogen cleavage enabled by difluorocarbene. ACS Cent. Sci. 6, 1819–1826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, Y., Heo, J., Kim, D., Chang, S. & Seo, S. Ring-opening functionalizations of unstrained cyclic amines enabled by difluorocarbene transfer. Nat. Commun. 11, 4761 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, R., Li, Q., Xie, Q., Ni, C. & Hu, J. Difluorocarbene-induced ring-opening difluoromethylation-halogenation of cyclic (thio)ethers with TMSCF2X (X=Br, Cl). Chem. Eur. J. 27, 17773–17779 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Mao, T. et al. N-Difluoromethylation of imidazoles and pyrazoles using BrCF2PO(OEt)2 under mild condition. Tetrahedron Lett. 59, 2752–2754 (2018).

    Article  CAS  Google Scholar 

  40. Ghigo, G., Cagnina, S., Maranzana, A. & Tonachini, G. The mechanism of the Stevens and Sommelet-Hauser rearrangements. A theoretical study. J. Org. Chem. 75, 3608–3617 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Franzen, V. Untersuchungen über carbene, XII1) Bestimmung der Lebensdauer des difluorcarbens. Chem. Ber. 95, 1964–1970 (1962). .

  42. Ruah, S. S., Miller, M. T., Bear, B., McCartney, J. & Grootenhuis, P. D. J. Modulators of ATP-binding cassette transporters. International patent WO2007087066A2 (2007).

  43. Bouaboula, M. et al. Substituted 6,7-dihydro-5H-benzo[7]annulene compounds, processes for their preparation and therapeutic uses thereof. US patent US9714221B1 (2017).

  44. Gersch, M. et al. The mechanism of caseinolytic protease (ClpP) inhibition. Angew. Chem. Int. Ed. 52, 3009–3014 (2013).

    Article  CAS  Google Scholar 

  45. Furuya, T. et al. Discovery of potent allosteric DRP1 inhibitors by disrupting protein-protein interaction with MiD49. ACS Med. Chem. Lett. 14, 1095–1099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wise, D. E. et al. Photoinduced oxygen transfer using nitroarenes for the anaerobic cleavage of alkenes. J. Am. Chem. Soc. 144, 15437–15442 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, S. et al. Pyrrolopyrazine kinase inhibitors. International patent WO2013030138A1 (2013).

Download references

Acknowledgements

This research was supported by the Ministry of Education of Singapore Academic Research Fund Tier 1: A-8001693-00-00 (M.J.K.) and the National Science Foundation (NSF): CHE-2247505 (P.L.). F.Z. acknowledges support from the postdoctoral programme of the International Training Plan for Young Talents of Guangdong Province. DFT calculations were carried out at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, supported by NSF award numbers: OAC-2117681, OAC-1928147 and OAC-1928224 (P.L.). G. K. Tan assisted with X-ray crystallographic measurements.

Author information

Authors and Affiliations

Authors

Contributions

T.-D.T. and F.Z. contributed equally to this work. M.J.K. and T.-D.T. conceived the work. T.-D.T., F.Z., Y.-Q.W. and X.L. conducted the optimization, reaction scope and mechanistic studies. K.P.Q. conducted the DFT calculations. D.Z.W.N. conducted the physicochemical property and metabolic stability studies. M.J.K., P.L. and E.C.Y.C. directed the research. M.J.K. wrote the manuscript, with revisions provided by the other authors.

Corresponding authors

Correspondence to Eric Chun Yong Chan, Peng Liu or Ming Joo Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Oleksandr Grygorenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–7, experimental data, synthesis and characterization data, DFT calculation data, X-ray crystallographic data, NMR spectra and references.

Supplementary Data 1

Crystallographic data for compound 31; CCDC reference 2323644.

Supplementary Data 2

Cartesian coordinates of DFT-optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, TD., Zhou, F., Quirion, K.P. et al. Catalytic difluorocarbene insertion enables access to fluorinated oxetane isosteres. Nat. Chem. 17, 719–726 (2025). https://doi.org/10.1038/s41557-024-01730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01730-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing