Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flue gas desulfurization and SO2 recovery within a flexible hydrogen-bonded organic framework

Abstract

The removal of SO2 from flue gas remains a challenge. Adsorption-based separation of SO2 using porous materials has been proposed as a more energy-efficient and cost-effective alternative to more traditional methods such as cryogenic distillations. Here we report a flexible hydrogen-bonded organic framework (HOF-NKU-1) that enables the sieving of SO2 through the guest-adaptive response and shape-memory effect of the material. HOF-NKU-1 exhibits a high selectivity of 7,331 for the separation of SO2/CO2 and a high SO2 storage density of 3.27 g cm−3 within the pore space at ambient conditions. The hydrophobic nature of HOF-NKU-1 enables high dynamic SO2 uptake and SO2 recovery, even in conditions of 95% humidity. The SO2/CO2 separation mechanism is studied through combinatorial gas sorption isotherms, breakthrough experiments and single-crystal diffraction studies, paving the way for the development of multifunctional shape-memory porous materials in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences between SO2 and CO2 molecules.
Fig. 2: The crystal structures and channels of HOF-NKU-1.
Fig. 3: Gas sorption properties.
Fig. 4: Gas-loaded SCXRD analysis and the comparison of low-pressure adsorption capacity.
Fig. 5: Breakthrough experiments.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the main text and the supplementary information or are available from the corresponding authors upon reasonable request. Crystallographic data for the structures in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2368931 (HOF-NKU-1), 2368932 (SO2@HOF-NKU-1), 2220262 (CO2@HOF-NKU-1) and 2368933 (SO2@HOF-NKU-1-removal). Copies of the data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Keith, D. W. Why capture CO2 from the atmosphere? Science 325, 1654–1655 (2009).

    CAS  PubMed  Google Scholar 

  2. Smith, G. L. et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nat. Mater. 18, 1358–1365 (2019).

    CAS  PubMed  Google Scholar 

  3. Yang, S. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887–894 (2012).

    CAS  PubMed  Google Scholar 

  4. Li, W. et al. Adsorption of sulfur dioxide in Cu(II)–carboxylate framework materials: the role of ligand functionalization and open metal sites. J. Am. Chem. Soc. 144, 13196–13204 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu, W. et al. Fabrication of pillar-cage fluorinated anion pillared metal-organic frameworks via a pillar embedding strategy and efficient separation of SO2 through multi-site trapping. Angew. Chem. Int. Ed. 62, e202312029 (2023).

    CAS  Google Scholar 

  6. Cui, X. et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 29, 1606929 (2017).

    Google Scholar 

  7. Han, Z. et al. A {Ni12}-wheel-based metal–organic framework for coordinative binding of sulphur dioxide and nitrogen dioxide. Angew. Chem. Int. Ed. 61, e202115585 (2022).

    CAS  Google Scholar 

  8. Bandosz, T. in Activated Carbon Surfaces in Environmental Remediation (ed. Bandosz, T. J.) 231–292 (Elsevier, 2006).

  9. Yang, R. T., Hernández-Maldonado, A. J. & Yang, F. H. Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301, 79–81 (2003).

    CAS  PubMed  Google Scholar 

  10. Li, J. et al. Structural and dynamic analysis of sulphur dioxide adsorption in a series of zirconium-based metal–organic frameworks. Angew. Chem. Int. Ed. 61, e202207259 (2022).

    CAS  Google Scholar 

  11. Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    CAS  PubMed  Google Scholar 

  12. Lin, R.-B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    CAS  PubMed  Google Scholar 

  13. Yang, Y. et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 13, 933–939 (2021).

    CAS  PubMed  Google Scholar 

  14. Deng, H. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    CAS  PubMed  Google Scholar 

  15. Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).

    CAS  PubMed  Google Scholar 

  16. Feng, P., Bu, X. & Stucky, G. D. Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature 388, 735–741 (1997).

    CAS  Google Scholar 

  17. Xie, F. et al. Complete separation of benzene-cyclohexene-cyclohexane mixtures via temperature-dependent molecular sieving by a flexible chain-like coordination polymer. Nat. Commun. 15, 2240 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

    CAS  PubMed  Google Scholar 

  19. He, C.-T. et al. Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chem. Sci. 8, 7560–7565 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, K. J. et al. Tuning pore size in square‐lattice coordination networks for size‐selective sieving of CO2. Angew. Chem. Int. Ed. 128, 10424–10428 (2016).

    Google Scholar 

  21. Su, S. et al. Metal–organic frameworks with a bioinspired porous polymer coating for sieving separation. J. Am. Chem. Soc. 145, 13195–13203 (2023).

    CAS  PubMed  Google Scholar 

  22. Jaramillo, D. E. et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites. Nat. Mater. 19, 517–521 (2020).

    CAS  PubMed  Google Scholar 

  23. Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    CAS  PubMed  Google Scholar 

  24. Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    CAS  PubMed  Google Scholar 

  25. Meng, Q.-W. et al. Guanidinium-based covalent organic framework membrane for single-acid recovery. Sci. Adv. 9, eadh0207 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Carter, J. H. et al. Exceptional adsorption and binding of sulfur dioxide in a robust zirconium-based metal–organic framework. J. Am. Chem. Soc. 140, 15564–15567 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Savage, M. et al. Selective adsorption of sulfur dioxide in a robust metal–organic framework material. Adv. Mater. 28, 8705–8711 (2016).

    CAS  PubMed  Google Scholar 

  28. He, Y., Xiang, S. & Chen, B. A Microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature. J. Am. Chem. Soc. 133, 14570–14573 (2011).

    CAS  PubMed  Google Scholar 

  29. Li, P. et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature. Angew. Chem. Int. Ed. 54, 574–577 (2015).

    CAS  Google Scholar 

  30. Wang, H. et al. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 137, 9963–9970 (2015).

    CAS  PubMed  Google Scholar 

  31. Karmakar, A. et al. Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials. Angew. Chem. Int. Ed. 55, 10667–10671 (2016).

    CAS  Google Scholar 

  32. Wang, B. et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline. J. Am. Chem. Soc. 142, 12478–12485 (2020).

    CAS  PubMed  Google Scholar 

  33. Huang, Q. et al. An exceptionally flexible hydrogen-bonded organic framework with large-scale void regulation and adaptive guest accommodation abilities. Nat. Commun. 10, 3074 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Liu, B.-T. et al. Ionic hydrogen-bonded organic frameworks for ion-responsive antimicrobial membranes. Adv. Mater. 34, 2202280 (2022).

    Google Scholar 

  35. Yu, D. et al. Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem. Int. Ed. 61, e202201485 (2022).

    CAS  Google Scholar 

  36. Lin, R.-B. et al. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 48, 1362–1389 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sakata, Y. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196 (2013).

    CAS  PubMed  Google Scholar 

  38. Li, L. et al. Emission-tunable soft porous organic crystal based on squaraine for single-crystal analysis of guest-induced gate-opening transformation. J. Am. Chem. Soc. 143, 3856–3864 (2021).

    CAS  PubMed  Google Scholar 

  39. Shivanna, M., Yang, Q.-Y., Bajpai, A., Patyk-Kazmierczak, E. & Zaworotko, M. J. A dynamic and multi-responsive porous flexible metal–organic material. Nat. Commun. 9, 3080 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Chen, S. et al. Precise construction of nitrogen-enriched porous ionic polymers as highly efficient sulfur dioxide adsorbents. Small 20, 2400746 (2024).

    CAS  Google Scholar 

  41. Jia, J. et al. Porous organic polymers for efficient and selective SO2 capture from CO2-rich flue gas. Angew. Chem. Int. Ed. 63, e202318844 (2024).

    CAS  Google Scholar 

  42. Chen, F. et al. Deep desulfurization with record SO2 adsorption on the metal–organic frameworks. J. Am. Chem. Soc. 143, 9040–9047 (2021).

    CAS  PubMed  Google Scholar 

  43. Xing, S. et al. Capture and separation of SO2 traces in metal–organic frameworks via pre‐synthetic pore environment tailoring by methyl groups. Angew. Chem. Int. Ed. 60, 17998–18005 (2021).

    CAS  Google Scholar 

  44. Gong, W. et al. Modulator-dependent dynamics synergistically enabled record SO2 uptake in Zr(IV) metal–organic frameworks based on pyrene-cored molecular quadripod ligand. J. Am. Chem. Soc. 145, 26890–26899 (2023).

    CAS  PubMed  Google Scholar 

  45. Bien, C. E. et al. Bioinspired metal–organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2022YFA1503301 to B.L.), the National Natural Science Foundation of China (grant no. 22471131 to B.L., 22035003 to X.-H.B. and W2431013 to B.C.), the Fundamental Research Funds for the Central Universities (Nankai University) to B.L., China Postdoctoral Science Foundation (grant no. 2022TQ0162) to L.L. and Haihe Laboratory of Sustainable Chemical Transformations (grant no. YYJC202101) to B.L. and X.-H.B.

Author information

Authors and Affiliations

Authors

Contributions

L.L., B.L., B.C. and X.-H.B. conceived the research idea and designed the experiments. L.L. synthesized the materials, grew the crystals and prepared the adsorbents. L.L., X.Z., L.Z., Z.Z. and X.L. performed the characterization. X.L. and T.H. performed the theoretical calculations. L.L., B.L., B.C. and X.-H.B. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Baiyan Li, Banglin Chen or Xian-He Bu.

Ethics declarations

Competing interests

A patent that covers the synthesis of the hydrogen-bonded organic framework (HOF-NKU-1) and its use in FGD experiments has been filed by Nankai University with X.-H.B., L.L. and B.L. listed as inventors (Chinese National Invention Patent, application no. 202411558505.X, status of application: under review). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wei Gong, Jiangtao Jia and Jin Shang Yes for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–45 and Tables 1–5.

Supplementary Data 1

Crystallographic data for HOF-NKU-1 (CCDC 2368931).

Supplementary Data 2

Crystallographic data for SO2@HOF-NKU-1 (CCDC 2368932).

Supplementary Data 3

Crystallographic data for SO2@HOF-NKU-1-removal (CCDC 2368933).

Supplementary Data 4

Crystallographic data for CO2@HOF-NKU-1 (CCDC 2220262).

Source data

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, X., Lian, X. et al. Flue gas desulfurization and SO2 recovery within a flexible hydrogen-bonded organic framework. Nat. Chem. 17, 727–733 (2025). https://doi.org/10.1038/s41557-025-01744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01744-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing