Abstract
The functionalization of aliphatic C–H bonds is a crucial step in the synthesis and transformation of complex molecules relevant to medicinal, agricultural and materials chemistry. As such, there is substantial interest in the development of general synthetic platforms that enable the efficient diversification of aliphatic C–H bonds. Here we report a hypervalent iodine reagent that releases a potent hydrogen atom abstractor for C–H activation under mild photochemical conditions. Using this reagent, we demonstrate selective (N-phenyltetrazole)thiolation of aliphatic C–H bonds for a broad scope of substrates. The synthetic utility of the thiolated products is showcased through various derivatizations. Simply by altering the radical trapping agent, our method can directly transform C–H bonds into diverse functionalities, including C–S, C–Cl, C–Br, C–I, C–O, C–N, C–C and C=C bonds.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others

Data availability
The data that support the findings of this study are available within the main text and the Supplementary Information. Crystallographic data for the structure reported in this Article has been deposited at the Cambridge Crystallographic Data Centre, under deposition number 2353098 (PIMS). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.
References
White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).
Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).
Golden, D. L., Suh, S. E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).
Bellotti, P., Huang, H. M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).
Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).
Li, B. et al. Harnessing the power of C–H functionalization chemistry to accelerate drug discovery. Synlett 35, 862–876 (2023).
Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).
Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).
Milan, M., Salamone, M., Costas, M. & Bietti, M. The quest for selectivity in hydrogen atom transfer based aliphatic C–H bond oxygenation. Acc. Chem. Res. 51, 1984–1995 (2018).
Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).
Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catal. 1, 523–598 (2021).
Chang, L. et al. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem. Sci. 14, 6841–6859 (2023).
Sisti, S. et al. Highly selective C(sp3)–H bond oxygenation at remote methylenic sites enabled by polarity enhancement. J. Am. Chem. Soc. 145, 22086–22096 (2023).
Chambers, R. K. et al. A preparative small-molecule mimic of liver CYP450 enzymes in the aliphatic C–H oxidation of carbocyclic N-heterocycles. Proc. Natl Acad. Sci. USA 120, e2300315120 (2023).
Saito, M. et al. N-Ammonium ylide mediators for electrochemical C–H oxidation. J. Am. Chem. Soc. 143, 7859–7867 (2021).
Zheng, Y. W., Narobe, R., Donabauer, K., Yakubov, S. & König, B. Copper(II)-photocatalyzed N–H alkylation with alkanes. ACS Catal. 10, 8582–8589 (2020).
Ghosh, S. K., Hu, M. & Comito, R. J. One-pot synthesis of primary and secondary aliphatic amines via mild and selective sp3 C−H imination. Chem. Eur. J. 27, 17601–17608 (2021).
Bosnidou, A. E. & Muñiz, K. Intermolecular radical C(sp3)−H amination under iodine catalysis. Angew. Chem. Int. Ed. 58, 7485–7489 (2019).
An, Q. et al. Cerium-catalyzed C–Hfunctionalizations of alkanes utilizing alcohols as hydrogen atom transfer agents. J. Am. Chem. Soc. 142, 6216–6226 (2020).
Tu, H., Zhu, S., Qing, F. L. & Chu, L. Visible-light-induced halogenation of aliphatic C–H bonds. Tetrahedron Lett. 59, 173–179 (2018).
Bume, D. D., Harry, S. A., Lectka, T. & Pitts, C. R. Catalyzed and promoted aliphatic fluorination. J. Org. Chem. 83, 8803–8814 (2018).
Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).
McMillan, A. J. et al. Practical and selective sp3 C−H bond chlorination via aminium radicals. Angew. Chem. Int. Ed. 60, 7132–7139 (2021).
Panferova, L. I., Zubkov, M. O., Kokorekin, V. A., Levin, V. V. & Dilman, A. D. Using the thiyl radical for aliphatic hydrogen-atom transfer: thiolation of unactivated C−H bonds. Angew. Chem. Int. Ed. 60, 2849–2854 (2021).
Zhao, J., Fang, H., Han, J., Pan, Y. & Li, G. Metal-free preparation of cycloalkyl aryl sulfides via di-tert-butyl peroxide-promoted oxidative C(sp3)–H bond thiolation of cycloalkanes. Adv. Synth. Catal. 356, 2719–2724 (2014).
Tu, J. L., Hu, A. M., Guo, L. & Xia, W. Iron-catalyzed C(sp3)–H borylation, thiolation, and sulfinylation enabled by photoinduced ligand-to-metal charge transfer. J. Am. Chem. Soc. 145, 7600–7611 (2023).
Mao, R., Bera, S., Turla, A. C. & Hu, X. Copper-catalyzed intermolecular functionalization of unactivated C(sp3)–H bonds and aliphatic carboxylic acids. J. Am. Chem. Soc. 143, 14667–14675 (2021).
Fazekas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).
Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).
Dai, Z. Y., Zhang, S. Q., Hong, X., Wang, P. S. & Gong, L. Z. A practical FeCl3/HCl photocatalyst for versatile aliphatic C–H functionalization. Chem Catal. 2, 1211–1222 (2022).
Roberts, B. P. & Winter, J. N. Generation and some reactions of the bis(trimethylsilyl)aminyl radical. J. Chem. Soc. Chem. Commun. 1978, 545–546 (1978).
Lu, Z. et al. Regioselective aliphatic C–H functionalization using frustrated radical pairs. Nature 619, 514–520 (2023).
Kwon, K., Simons, R. T., Nandakumar, M. & Roizen, J. L. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis. Chem. Rev. 122, 2353–2428 (2022).
Mandal, M., Buss, J. A., Chen, S.-J., Cramer, C. J. & Stahl, S. S. Mechanistic insights into radical formation and functionalization in copper/N-fluorobenzenesulfonimide radical-relay reactions. Chem. Sci. 15, 1364–1373 (2024).
Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).
Yin, C. & Hu, P. Visible-light-induced cross-dehydrogenative coupling of heteroarenes with aliphatic alcohols mediated by iodobenzene dichloride. European J. Org. Chem. 26, e202300015 (2023).
Sakamoto, R., Inada, T., Selvakumar, S., Moteki, S. A. & Maruoka, K. Efficient photolytic C–H bond functionalization of alkylbenzene with hypervalent iodine(iii) reagent. Chem. Commun. 52, 3758–3761 (2016).
Mantry, L. & Gandeepan, P. Visible-light-induced PhI(OAc)2-mediated alkylation of heteroarenes with simple alkanes and ethers. J. Org. Chem. 89, 6539–6544 (2024).
Li, X., Liu, C., Guo, S., Wang, W. & Zhang, Y. PIFA-mediated cross-dehydrogenative coupling of N-heteroarenes with cyclic ethers: ethanol as an efficient promoter. European J. Org. Chem. 2021, 411–421 (2021).
Smaligo, A. J. & Kwon, O. Dealkenylative thiylation of C(sp3)–C(sp2) Bonds. Org. Lett. 21, 8592–8597 (2019).
Zachmann, A., Drappeau, J., Liu, S. & Alexanian, E. J. C(sp3)–H (N-phenyltetrazole)thiolation as an enabling tool for molecular diversification. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202404879 (2024).
Tsuboyama, K. et al. A convenient synthesis of S-glycosyl donors of D-glucose and O-glycosylations involving the new reagent. Chem. Pharm. Bull. 38, 636–638 (1990).
Takeda, K., Torii, K. & Ogura, H. Silver triflate-promoted coupling reactions of benzylic and allylic sulfides with O-silylated enolates of ketones and esters, a synthesis of (±)-ar-turmerone. Tetrahedron Lett. 31, 265–266 (1990).
Sakaine, G., Leitis, Z., Ločmele, R. & Smits, G. Julia-Kocienski olefination: a tutorial review. European J. Org. Chem. 26, e202201217 (2023).
Merchant, R. R. et al. Modular radical cross-coupling with sulfones enables access to sp3-rich (fluoro)alkylated scaffolds. Science 360, 75–80 (2018).
Hughes, J. M. E. & Fier, P. S. Desulfonylative arylation of redox-active alkyl sulfones with aryl bromides. Org. Lett. 21, 5650–5654 (2019).
Nambo, M. et al. Desulfonylative coupling of alkylsulfones with gem-difluoroalkenes by visible-light photoredox catalysis. ACS Catal. 12, 9526–9532 (2022).
Nambo, M., Tahara, Y., Yim, J. C. H., Yokogawa, D. & Crudden, C. M. Synthesis of quaternary centres by single electron reduction and alkylation of alkylsulfones. Chem. Sci. 12, 4866–4871 (2021).
Chen, Y. et al. Photoredox generation of sulfonyl radicals and coupling with electron deficient olefins. Org. Lett. 22, 5746–5748 (2020).
Oda, R. & Nakata, K. Chemodivergent dehydrative nucleophilic substitutions of diarylmethanols with 1-phenyl-1H-tetrazole-5-thiol catalyzed by FeCl3. Asian J. Org. Chem. 9, 1234–1242 (2020).
Savolainen, M. A., Han, X. & Wu, J. Regioselective formal hydroamination of styrenes with 1-phenyl-1H-tetrazole-5-thiol. Org. Lett. 16, 4349–4351 (2014).
Kondo, T. & Mitsudo, T. A. Metal-catalyzed carbon–sulfur bond formation. Chem. Rev. 100, 3205–3220 (2000).
Hegedus, L. L. & Mccabe, R. W. Catalyst poisoning. Catal. Rev. 23, 377–476 (1981).
Aldea, R. & Alper, H. Selective aerobic oxidation of sulfides using a novel palladium complex as the catalyst precursor. J. Org. Chem. 60, 8365–8366 (1995).
Das, R. & Chakraborty, D. Cu(II)-catalyzed oxidation of sulfides. Tetrahedron Lett. 51, 6255–6258 (2010).
Martín, S. E. & Rossi, L. I. An efficient and selective aerobic oxidation of sulfides to sulfoxides catalyzed by Fe(NO3)3–FeBr3. Tetrahedron Lett. 42, 7147–7151 (2001).
Huang, C. et al. Direct allylic C(sp3)−H and vinylic C(sp2)−H thiolation with hydrogen evolution by quantum dots and visible light. Angew. Chem. Int. Ed. 60, 11779–11783 (2021).
Kim, J., Kim, J., Kang, B. & Hong, S. H. Direct allylic C(sp3)–H thiolation with disulfides via visible light photoredox catalysis. ACS Catal. 10, 6013–6022 (2020).
Barton, D. H. R., Jaszberenyi, J. C., Theodorakis, E. A. & Reibenspies, J. H. The invention of radical reactions. 30. Diazirines as carbon radical traps. Mechanistic aspects and synthetic applications of a novel and efficient amination process. J. Am. Chem. Soc. 115, 8050–8059 (1993).
Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).
West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).
Acknowledgements
Financial support was provided by the National Institute of Health (R01GM134088 to S.L.) and Genentech (to S.L.). We thank E. Villemure and J. A. Terrett for helpful discussions, I. Keresztes for his help in structural elucidation of complex products, S. N. MacMillan for her help with single-crystal X-ray diffraction experiments, Y. Wang for his help with density functional theory calculations, J. Wright for his help with thermogravimetric analysis and differential scanning calorimetry and W.-C. Lee for reproducing experiments.
Author information
Authors and Affiliations
Contributions
S.L. supervised the project. Z.L. and S.L. conceived the work. Z.L. and S.L. designed the experiments. Z.L. and J.P. conducted synthetic experiments. Z.L. and S.L. wrote the manuscript. J.P. assisted in writing and editing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks Fateh Singh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–19, Tables 1–4, Materials, Methods, Discussion and NMR spectral data.
Supplementary Data 1
Crystallographic data for compound PIMS; CCDC reference 2353098.
Supplementary Data 2
The xyz coordinates of the density functional theory calculation results.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lu, Z., Putziger, J. & Lin, S. Light-activated hypervalent iodine agents enable diverse aliphatic C–H functionalization. Nat. Chem. 17, 365–372 (2025). https://doi.org/10.1038/s41557-025-01749-4
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41557-025-01749-4
This article is cited by
-
Photomediated aliphatic C–H functionalization
Nature Chemistry (2025)

