Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-activated hypervalent iodine agents enable diverse aliphatic C–H functionalization

Abstract

The functionalization of aliphatic C–H bonds is a crucial step in the synthesis and transformation of complex molecules relevant to medicinal, agricultural and materials chemistry. As such, there is substantial interest in the development of general synthetic platforms that enable the efficient diversification of aliphatic C–H bonds. Here we report a hypervalent iodine reagent that releases a potent hydrogen atom abstractor for C–H activation under mild photochemical conditions. Using this reagent, we demonstrate selective (N-phenyltetrazole)thiolation of aliphatic C–H bonds for a broad scope of substrates. The synthetic utility of the thiolated products is showcased through various derivatizations. Simply by altering the radical trapping agent, our method can directly transform C–H bonds into diverse functionalities, including C–S, C–Cl, C–Br, C–I, C–O, C–N, C–C and C=C bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversification of aliphatic C–H bonds via hydrogen atom transfer.
Fig. 2: Derivatizations of (N-phenyltetrazole)thioethers and tetrazolothiones.
Fig. 3: C–H diversification using PIMS.
Fig. 4: Regiodivergent C–H (N-phenyltetrazole)thiolation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and the Supplementary Information. Crystallographic data for the structure reported in this Article has been deposited at the Cambridge Crystallographic Data Centre, under deposition number 2353098 (PIMS). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Golden, D. L., Suh, S. E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellotti, P., Huang, H. M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Li, B. et al. Harnessing the power of C–H functionalization chemistry to accelerate drug discovery. Synlett 35, 862–876 (2023).

    Google Scholar 

  7. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  Google Scholar 

  8. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milan, M., Salamone, M., Costas, M. & Bietti, M. The quest for selectivity in hydrogen atom transfer based aliphatic C–H bond oxygenation. Acc. Chem. Res. 51, 1984–1995 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catal. 1, 523–598 (2021).

    Article  CAS  Google Scholar 

  12. Chang, L. et al. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem. Sci. 14, 6841–6859 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sisti, S. et al. Highly selective C(sp3)–H bond oxygenation at remote methylenic sites enabled by polarity enhancement. J. Am. Chem. Soc. 145, 22086–22096 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chambers, R. K. et al. A preparative small-molecule mimic of liver CYP450 enzymes in the aliphatic C–H oxidation of carbocyclic N-heterocycles. Proc. Natl Acad. Sci. USA 120, e2300315120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saito, M. et al. N-Ammonium ylide mediators for electrochemical C–H oxidation. J. Am. Chem. Soc. 143, 7859–7867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng, Y. W., Narobe, R., Donabauer, K., Yakubov, S. & König, B. Copper(II)-photocatalyzed N–H alkylation with alkanes. ACS Catal. 10, 8582–8589 (2020).

    Article  CAS  Google Scholar 

  17. Ghosh, S. K., Hu, M. & Comito, R. J. One-pot synthesis of primary and secondary aliphatic amines via mild and selective sp3 C−H imination. Chem. Eur. J. 27, 17601–17608 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Bosnidou, A. E. & Muñiz, K. Intermolecular radical C(sp3)−H amination under iodine catalysis. Angew. Chem. Int. Ed. 58, 7485–7489 (2019).

    Article  CAS  Google Scholar 

  19. An, Q. et al. Cerium-catalyzed C–Hfunctionalizations of alkanes utilizing alcohols as hydrogen atom transfer agents. J. Am. Chem. Soc. 142, 6216–6226 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Tu, H., Zhu, S., Qing, F. L. & Chu, L. Visible-light-induced halogenation of aliphatic C–H bonds. Tetrahedron Lett. 59, 173–179 (2018).

    Article  CAS  Google Scholar 

  21. Bume, D. D., Harry, S. A., Lectka, T. & Pitts, C. R. Catalyzed and promoted aliphatic fluorination. J. Org. Chem. 83, 8803–8814 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. McMillan, A. J. et al. Practical and selective sp3 C−H bond chlorination via aminium radicals. Angew. Chem. Int. Ed. 60, 7132–7139 (2021).

    Article  CAS  Google Scholar 

  24. Panferova, L. I., Zubkov, M. O., Kokorekin, V. A., Levin, V. V. & Dilman, A. D. Using the thiyl radical for aliphatic hydrogen-atom transfer: thiolation of unactivated C−H bonds. Angew. Chem. Int. Ed. 60, 2849–2854 (2021).

    Article  CAS  Google Scholar 

  25. Zhao, J., Fang, H., Han, J., Pan, Y. & Li, G. Metal-free preparation of cycloalkyl aryl sulfides via di-tert-butyl peroxide-promoted oxidative C(sp3)–H bond thiolation of cycloalkanes. Adv. Synth. Catal. 356, 2719–2724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tu, J. L., Hu, A. M., Guo, L. & Xia, W. Iron-catalyzed C(sp3)–H borylation, thiolation, and sulfinylation enabled by photoinduced ligand-to-metal charge transfer. J. Am. Chem. Soc. 145, 7600–7611 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Mao, R., Bera, S., Turla, A. C. & Hu, X. Copper-catalyzed intermolecular functionalization of unactivated C(sp3)–H bonds and aliphatic carboxylic acids. J. Am. Chem. Soc. 143, 14667–14675 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Fazekas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Margrey, K. A., Czaplyski, W. L., Nicewicz, D. A. & Alexanian, E. J. A general strategy for aliphatic C–H functionalization enabled by organic photoredox catalysis. J. Am. Chem. Soc. 140, 4213–4217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai, Z. Y., Zhang, S. Q., Hong, X., Wang, P. S. & Gong, L. Z. A practical FeCl3/HCl photocatalyst for versatile aliphatic C–H functionalization. Chem Catal. 2, 1211–1222 (2022).

    Article  CAS  Google Scholar 

  31. Roberts, B. P. & Winter, J. N. Generation and some reactions of the bis(trimethylsilyl)aminyl radical. J. Chem. Soc. Chem. Commun. 1978, 545–546 (1978).

  32. Lu, Z. et al. Regioselective aliphatic C–H functionalization using frustrated radical pairs. Nature 619, 514–520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon, K., Simons, R. T., Nandakumar, M. & Roizen, J. L. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis. Chem. Rev. 122, 2353–2428 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Mandal, M., Buss, J. A., Chen, S.-J., Cramer, C. J. & Stahl, S. S. Mechanistic insights into radical formation and functionalization in copper/N-fluorobenzenesulfonimide radical-relay reactions. Chem. Sci. 15, 1364–1373 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yin, C. & Hu, P. Visible-light-induced cross-dehydrogenative coupling of heteroarenes with aliphatic alcohols mediated by iodobenzene dichloride. European J. Org. Chem. 26, e202300015 (2023).

    Article  CAS  Google Scholar 

  37. Sakamoto, R., Inada, T., Selvakumar, S., Moteki, S. A. & Maruoka, K. Efficient photolytic C–H bond functionalization of alkylbenzene with hypervalent iodine(iii) reagent. Chem. Commun. 52, 3758–3761 (2016).

    Article  CAS  Google Scholar 

  38. Mantry, L. & Gandeepan, P. Visible-light-induced PhI(OAc)2-mediated alkylation of heteroarenes with simple alkanes and ethers. J. Org. Chem. 89, 6539–6544 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X., Liu, C., Guo, S., Wang, W. & Zhang, Y. PIFA-mediated cross-dehydrogenative coupling of N-heteroarenes with cyclic ethers: ethanol as an efficient promoter. European J. Org. Chem. 2021, 411–421 (2021).

    Article  CAS  Google Scholar 

  40. Smaligo, A. J. & Kwon, O. Dealkenylative thiylation of C(sp3)–C(sp2) Bonds. Org. Lett. 21, 8592–8597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zachmann, A., Drappeau, J., Liu, S. & Alexanian, E. J. C(sp3)–H (N-phenyltetrazole)thiolation as an enabling tool for molecular diversification. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202404879 (2024).

  42. Tsuboyama, K. et al. A convenient synthesis of S-glycosyl donors of D-glucose and O-glycosylations involving the new reagent. Chem. Pharm. Bull. 38, 636–638 (1990).

    Article  CAS  Google Scholar 

  43. Takeda, K., Torii, K. & Ogura, H. Silver triflate-promoted coupling reactions of benzylic and allylic sulfides with O-silylated enolates of ketones and esters, a synthesis of (±)-ar-turmerone. Tetrahedron Lett. 31, 265–266 (1990).

    Article  CAS  Google Scholar 

  44. Sakaine, G., Leitis, Z., Ločmele, R. & Smits, G. Julia-Kocienski olefination: a tutorial review. European J. Org. Chem. 26, e202201217 (2023).

    Article  CAS  Google Scholar 

  45. Merchant, R. R. et al. Modular radical cross-coupling with sulfones enables access to sp3-rich (fluoro)alkylated scaffolds. Science 360, 75–80 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hughes, J. M. E. & Fier, P. S. Desulfonylative arylation of redox-active alkyl sulfones with aryl bromides. Org. Lett. 21, 5650–5654 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Nambo, M. et al. Desulfonylative coupling of alkylsulfones with gem-difluoroalkenes by visible-light photoredox catalysis. ACS Catal. 12, 9526–9532 (2022).

    Article  CAS  Google Scholar 

  48. Nambo, M., Tahara, Y., Yim, J. C. H., Yokogawa, D. & Crudden, C. M. Synthesis of quaternary centres by single electron reduction and alkylation of alkylsulfones. Chem. Sci. 12, 4866–4871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Y. et al. Photoredox generation of sulfonyl radicals and coupling with electron deficient olefins. Org. Lett. 22, 5746–5748 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Oda, R. & Nakata, K. Chemodivergent dehydrative nucleophilic substitutions of diarylmethanols with 1-phenyl-1H-tetrazole-5-thiol catalyzed by FeCl3. Asian J. Org. Chem. 9, 1234–1242 (2020).

    Article  CAS  Google Scholar 

  51. Savolainen, M. A., Han, X. & Wu, J. Regioselective formal hydroamination of styrenes with 1-phenyl-1H-tetrazole-5-thiol. Org. Lett. 16, 4349–4351 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Kondo, T. & Mitsudo, T. A. Metal-catalyzed carbon–sulfur bond formation. Chem. Rev. 100, 3205–3220 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Hegedus, L. L. & Mccabe, R. W. Catalyst poisoning. Catal. Rev. 23, 377–476 (1981).

    Article  CAS  Google Scholar 

  54. Aldea, R. & Alper, H. Selective aerobic oxidation of sulfides using a novel palladium complex as the catalyst precursor. J. Org. Chem. 60, 8365–8366 (1995).

    Article  CAS  Google Scholar 

  55. Das, R. & Chakraborty, D. Cu(II)-catalyzed oxidation of sulfides. Tetrahedron Lett. 51, 6255–6258 (2010).

    Article  CAS  Google Scholar 

  56. Martín, S. E. & Rossi, L. I. An efficient and selective aerobic oxidation of sulfides to sulfoxides catalyzed by Fe(NO3)3–FeBr3. Tetrahedron Lett. 42, 7147–7151 (2001).

    Article  Google Scholar 

  57. Huang, C. et al. Direct allylic C(sp3)−H and vinylic C(sp2)−H thiolation with hydrogen evolution by quantum dots and visible light. Angew. Chem. Int. Ed. 60, 11779–11783 (2021).

    Article  CAS  Google Scholar 

  58. Kim, J., Kim, J., Kang, B. & Hong, S. H. Direct allylic C(sp3)–H thiolation with disulfides via visible light photoredox catalysis. ACS Catal. 10, 6013–6022 (2020).

    Article  CAS  Google Scholar 

  59. Barton, D. H. R., Jaszberenyi, J. C., Theodorakis, E. A. & Reibenspies, J. H. The invention of radical reactions. 30. Diazirines as carbon radical traps. Mechanistic aspects and synthetic applications of a novel and efficient amination process. J. Am. Chem. Soc. 115, 8050–8059 (1993).

    Article  CAS  Google Scholar 

  60. Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Institute of Health (R01GM134088 to S.L.) and Genentech (to S.L.). We thank E. Villemure and J. A. Terrett for helpful discussions, I. Keresztes for his help in structural elucidation of complex products, S. N. MacMillan for her help with single-crystal X-ray diffraction experiments, Y. Wang for his help with density functional theory calculations, J. Wright for his help with thermogravimetric analysis and differential scanning calorimetry and W.-C. Lee for reproducing experiments.

Author information

Authors and Affiliations

Authors

Contributions

S.L. supervised the project. Z.L. and S.L. conceived the work. Z.L. and S.L. designed the experiments. Z.L. and J.P. conducted synthetic experiments. Z.L. and S.L. wrote the manuscript. J.P. assisted in writing and editing the manuscript.

Corresponding author

Correspondence to Song Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Fateh Singh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–4, Materials, Methods, Discussion and NMR spectral data.

Supplementary Data 1

Crystallographic data for compound PIMS; CCDC reference 2353098.

Supplementary Data 2

The xyz coordinates of the density functional theory calculation results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Putziger, J. & Lin, S. Light-activated hypervalent iodine agents enable diverse aliphatic C–H functionalization. Nat. Chem. 17, 365–372 (2025). https://doi.org/10.1038/s41557-025-01749-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01749-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing