Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vinyl polymers with fully degradable carbon backbones enabled by aromatization-driven C–C bond cleavage

Abstract

Degradation of carbon-backbone polymers, which make up most plastics, remains a formidable challenge owing to strong and inert main-chain C–C bonds. While incorporation of comonomers that generate backbone radicals under certain conditions can induce degradation of the polymer chain, such strategies yield complex oligomer mixtures. Here we report aromatization-driven C–C bond cleavage as a viable and powerful strategy to endow the degradability into carbon backbones using acrylic polymers as a model example. The key to this new strategy is the efficient, living, alternating addition copolymerization of acrylates with simple, commercially available and biorenewable coumarin using a frustrated Lewis pair cooperative catalyst. The resulting acrylic copolymers are strong, transparent thermoplastics with key thermal, optical, mechanical properties comparable or superior to poly(methyl methacrylate). Under strong base, alternating copolymers can completely degrade at room temperature through efficient cleavage of main-chain C–C bonds utilizing aromatization as a thermodynamic driving force, to generate pure, pharmaceutically valuable molecules, thus affording durable, robust yet fully degradable carbon-backbone acrylic polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different strategies for producing degradable vinyl polymers.
Fig. 2: Living copolymerization of BA and CM.
Fig. 3: Energy profile of initial three conjugate-addition steps during the copolymerization of MA and CM at RT.
Fig. 4: Physical properties of acrylate/CM copolymers.
Fig. 5: Degradation behaviour of acrylate/CM copolymers.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the article and its Supplementary Information, and/or from the corresponding authors on reasonable request.

References

  1. Industry Agenda. The new plastics economy: rethinking the future of plastics. In The World Economic Forum: Geneva, Switzerland (Ellen MacArthur Foundation, 2016).

  2. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Hong, M. & Chen, E. Y.-X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    CAS  Google Scholar 

  4. Worch, J. C. & Dove, A. P. 100th anniversary of macromolecular science viewpoint: toward catalytic chemical recycling of waste (and future) plastics. ACS Macro Lett. 9, 1494–1506 (2020).

    CAS  PubMed  Google Scholar 

  5. Pesenti, T. & Nicolas, J. 100th anniversary of macromolecular science viewpoint: degradable polymers from radical ring-opening polymerization: latest advances, new directions, and ongoing challenges. ACS Macro Lett. 9, 1812–1835 (2020).

    CAS  PubMed  Google Scholar 

  6. Tardy, A., Nicolas, J., Gigmes, D., Lefay, C. & Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem. Rev. 117, 1319–1406 (2017).

    CAS  PubMed  Google Scholar 

  7. Deng, Y., Mehner, F. & Gaitzsch, J. Current standing on radical ring-opening polymerizations of cyclic ketene acetals as homopolymers and copolymers with one another. Macromol. Rapid Commun. 44, 2200941 (2023).

    CAS  Google Scholar 

  8. Smith, R. A., Fu, G., McAteer, O., Xu, M. & Gutekunst, W. R. Radical approach to thioester-containing polymers. J. Am. Chem. Soc. 141, 1446–1451 (2019).

    CAS  PubMed  Google Scholar 

  9. Kiel, G. R. et al. Cleavable comonomers for chemically recyclable polystyrene: a general approach to vinyl polymer circularity. J. Am. Chem. Soc. 144, 12979–12988 (2022).

    CAS  PubMed  Google Scholar 

  10. Do, P. T., Poad, B. L. J. & Frisch, H. Programming photodegradability into vinylic polymers via radical ring-opening polymerization. Angew. Chem. Int. Ed. 62, e202213511 (2023).

    CAS  Google Scholar 

  11. Paulusse, J. M. J., Amir, R. J., Evans, R. A. & Hawker, C. J. Free radical polymers with tunable and selective bio- and chemical degradability. J. Am. Chem. Soc. 131, 9805–9812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, W. et al. Degradable vinyl random copolymers via photocontrolled radical ring-opening cascade copolymerization. Angew. Chem. Int. Ed. 61, e202113302 (2022).

    CAS  Google Scholar 

  13. Watanabe, H. & Kamigaito, H. Direct radical copolymerizations of thioamides to generate vinyl polymers with degradable thioether bonds in the backbones. J. Am. Chem. Soc. 145, 10948–10953 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Korpusik, A. B. et al. Degradation of polyacrylates by one-pot sequential dehydrodecarboxylation and ozonolysis. J. Am. Chem. Soc. 145, 10480–10485 (2023).

    CAS  PubMed  Google Scholar 

  15. Spring, S. W. et al. Poly(2,3-dihydrofuran): a strong, biorenewable, and degradable thermoplastic synthesized via room temperature cationic polymerization. J. Am. Chem. Soc. 144, 15727–15734 (2022).

    CAS  PubMed  Google Scholar 

  16. Kimura, T., Kuroda, K., Kubota, H. & Ouchi, M. Metal-catalyzed switching degradation of vinyl polymers via introduction of an “in-chain” carbon–halogen bond as the trigger. ACS Macro Lett. 10, 1535–1539 (2021).

    CAS  PubMed  Google Scholar 

  17. Arslan, Z., Kiliclar, H. C. & Yagci, Y. Visible light induced degradation of poly(methyl methacrylate-co-methyl α-chloro acrylate) copolymer at ambient temperature. Macromol. Rapid Commun. 44, 2300066 (2023).

    CAS  Google Scholar 

  18. Garrison, J. B., Hughes, R. W. & Sumerlin, B. S. Backbone degradation of polymethacrylates via metal-free ambient-temperature photoinduced single-electron transfer. ACS Macro Lett. 11, 441–446 (2022).

    CAS  PubMed  Google Scholar 

  19. Makino, H., Nishikawa, T. & Ouchi, M. Incorporation of a boryl pendant as the trigger in a methacrylate polymer for backbone degradation. Chem. Commun. 58, 11957–11960 (2022).

    CAS  Google Scholar 

  20. Yamamoto, S., Kubo, T. & Satoh, K. Interlocking degradation of vinyl polymers via main-chain C–C bonds scission by introducing pendant-responsive comonomers. J. Polym. Sci. 60, 3435–3446 (2022).

    CAS  Google Scholar 

  21. Kimura, T. & Ouchi, M. Photocatalyzed hydrogen atom transfer degradation of vinyl polymers: cleavage of a backbone C–C bond triggered by radical activation of a C–H bond in a pendant. Angew. Chem. Int. Ed. 62, e202305252 (2023).

    CAS  Google Scholar 

  22. Čamdžić, L. & Stache, E. E. Controlled radical polymerization of acrylates and isocyanides installs degradable functionality into novel copolymers. J. Am. Chem. Soc. 145, 20311–20318 (2023).

    PubMed  Google Scholar 

  23. Hong, M. & Chen, E. Y.-X. Future directions for sustainable polymers. Trends Chem. 1, 148–151 (2019).

    CAS  Google Scholar 

  24. Haque, F. M. et al. Defining the macromolecules of tomorrow through synergistic sustainable polymer research. Chem. Rev. 122, 6322–6373 (2022).

    CAS  PubMed  Google Scholar 

  25. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    CAS  Google Scholar 

  26. Jones, G. R. et al. Reversed controlled polymerization (RCP): depolymerization from well-defined polymers to monomers. J. Am. Chem. Soc. 145, 9898–9915 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Delplace, V. & Nicolas, J. Degradable vinyl polymers for biomedical applications. Nat. Chem. 7, 771–784 (2015).

    CAS  PubMed  Google Scholar 

  28. Korley, L. T. J., Epps, T. H., Helms, B. A. & Ryan, A. J. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    CAS  PubMed  Google Scholar 

  29. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    CAS  PubMed  Google Scholar 

  30. Okennedy, R. & Thornes, R. D. Coumarins: Biology, Applications and Mode of Action (Wiley, 1997).

  31. Medina, F. G. et al. Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat. Prod. Rep. 32, 1472–1507 (2015).

    CAS  PubMed  Google Scholar 

  32. Chun, K. et al. Chromen-based TNF-α converting enzyme (TACE) inhibitors: design, synthesis, and biological evaluation. Bioorg. Med. Chem. 16, 530–535 (2008).

    CAS  PubMed  Google Scholar 

  33. Hou, J. et al. Visible-light-driven alkyne hydro-/carbocarboxylation using CO2 via iridium/cobalt dual catalysis for divergent heterocycle synthesis. J. Am. Chem. Soc. 140, 5257–5263 (2018).

    CAS  PubMed  Google Scholar 

  34. Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem. Rev. 104, 3059–3077 (2004).

    CAS  PubMed  Google Scholar 

  35. Cao, D. et al. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev. 119, 10403–10519 (2019).

    CAS  PubMed  Google Scholar 

  36. Hong, M., Chen, J. & Chen, E. Y.-X. Polymerization of polar monomers mediated by main-group Lewis acid–base pairs. Chem. Rev. 118, 10551–10616 (2018).

    CAS  PubMed  Google Scholar 

  37. Hong, M. in Frustrated Lewis Pairs. Molecular Catalysis Vol. 2 (eds Slootweg, J. C. & Jupp, A. R.) 283–317 (Springer, 2021).

  38. McGraw, M. L. & Chen, E. Y.-X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 53, 6102–6122 (2020).

    CAS  Google Scholar 

  39. Zhao, W., He, J. & Zhang, Y. Lewis pairs polymerization of polar vinyl monomers. Sci. Bull. 64, 1830–1840 (2019).

    CAS  Google Scholar 

  40. Zhao, W., He, J. & Zhang, Y. Research progress in the living/controlled polymerization of (meth)acrylate monomers by Lewis pair. Sci. China Chem. 66, 2256–2266 (2023).

    CAS  Google Scholar 

  41. Knaus, M. G. M., Giuman, M. M., Pöthig, A. & Rieger, B. End of frustration: catalytic precision polymerization with highly interacting Lewis pairs. J. Am. Chem. Soc. 138, 7776–7781 (2016).

    CAS  PubMed  Google Scholar 

  42. Zhou, Y., Jiang, S. & Xu, X. Isospecific polymerization of methyl methacrylate by intramolecular rare-earth metal based Lewis pairs. Chin. J. Chem. 39, 149–156 (2021).

    CAS  Google Scholar 

  43. Welch, G. C., Juan, R. R. S., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    CAS  PubMed  Google Scholar 

  44. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    PubMed  Google Scholar 

  45. Kamber, N. E. et al. Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007).

    CAS  PubMed  Google Scholar 

  46. Ottou, W. N., Sardon, H., Mecerreyes, D., Vignolle, J. & Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 56, 64–115 (2016).

    CAS  Google Scholar 

  47. Xu, T. & Chen, E. Y.-X. Probing site cooperativity of frustrated phosphine/borane Lewis pairs by a polymerization study. J. Am. Chem. Soc. 136, 1774–1777 (2014).

    CAS  PubMed  Google Scholar 

  48. Song, Y., He, J., Zhang, Y., Gilsdorf, R. A. & Chen, E. Y.-X. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nat. Chem. 15, 366–376 (2023).

    CAS  PubMed  Google Scholar 

  49. Zhang, Z.-H., Wang, X., Wang, X.-J., Li, Y. & Hong, M. Tris(2,4-difluorophenyl)borane/triisobutylphosphine Lewis pair: a thermostable and air/moisture-tolerant organic catalyst for the living polymerization of acrylates. Macromolecules 54, 8495–8502 (2021).

    CAS  Google Scholar 

  50. Welch, G. C. & Stephan, D. W. Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J. Am. Chem. Soc. 129, 1880–1881 (2007).

    CAS  PubMed  Google Scholar 

  51. Zhang, Y., Miyake, G. M. & Chen, E. Y.-X. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Ed. 49, 10158–10162 (2010).

    CAS  Google Scholar 

  52. Jia, Y.-B. et al. Mechanistic aspects of initiation and deactivation in N-heterocyclic olefin mediated polymerization of acrylates with alane as activator. Macromolecules 47, 1966–1972 (2014).

    CAS  Google Scholar 

  53. Jia, Y.-B. et al. Controlled divinyl monomer polymerization mediated by Lewis pairs: a powerful synthetic strategy for functional polymers. ACS Macro Lett. 3, 896–899 (2014).

    CAS  PubMed  Google Scholar 

  54. Wang, Q. et al. Living polymerization of conjugated polar alkenes catalyzed by N-heterocyclic olefin-based frustrated Lewis pairs. ACS Catal. 8, 3571–3578 (2018).

    CAS  Google Scholar 

  55. Zhang, P., Zhou, H. & Lu, X.-B. Living and chemoselective (co)polymerization of polar divinyl monomers mediated by bulky Lewis pairs. Macromolecules 52, 4520–4525 (2019).

    CAS  Google Scholar 

  56. Wang, X.-J. & Hong, M. Lewis-pair-mediated selective dimerization and polymerization of lignocellulose-based β-angelica lactone into biofuel and acrylic bioplastic. Angew. Chem. Int. Ed. 59, 2664–2668 (2020).

    CAS  Google Scholar 

  57. Zhao, W. et al. Lewis-pair-catalyzed regioselective polymerization of (E,E)-alkyl sorbates for the synthesis of (AB)n sequenced polymers. Angew. Chem. Int. Ed. 60, 24306–24311 (2021).

    CAS  Google Scholar 

  58. Reilly, L. T. et al. Compounded interplay of kinetic and thermodynamic control over comonomer sequences by Lewis pair polymerization. J. Am. Chem. Soc. 144, 23572–23584 (2022).

    CAS  PubMed  Google Scholar 

  59. Wu, H., Ma, G. & Xia, Y. Experimental study of tensile properties of PMMA at intermediate strain rate. Mater. Lett. 58, 3681–3685 (2004).

    CAS  Google Scholar 

  60. Castro, L. et al. Are solvent and dispersion effects crucial in olefin polymerization DFT calculations? Some insights from propylene coordination and insertion reactions with group 3 and 4 metallocenes. ACS Catal. 5, 416–425 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2021YFA1501700), the National Natural Science Foundation of China (grant numbers 22471286 and 52203020), the Science and Technology Commission of Shanghai Municipality (grant numbers 22ZR1481900, 23XD1424600 and 22YF1458100), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB0610000) and the CAS Project for Young Scientists in Basic Research (YSBR-094). Y.S. is thankful for the financial support from the Youth Innovation Promotion Association CAS (2022253). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper. We thank F. Xu at the Institute of Process Engineering, Chinese Academy of Sciences, for the assistance with the measurement of optical property.

Author information

Authors and Affiliations

Authors

Contributions

Z.-H.Z., Y.S. and M.H. conceived the idea and designed the experiments. Z.-H.Z. performed the polymerization experiments. Y.S. performed the degradation experiments. Z.-H.Z. and Y.L. conducted the physical property measurements. T.R. and L.M. performed the theoretical calculations. All authors participated in the data analyses and discussions. M.H. directed the project and wrote the paper.

Corresponding authors

Correspondence to Laurent Maron or Miao Hong.

Ethics declarations

Competing interests

M.H., Z.-H.Z. and Y.S. are inventors on a Chinese patent application (number 2024104783860) submitted by the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, that covers the synthesis of acrylate/CM random and alternating copolymers by Lewis pair catalyst and their degradations enabled by ACBC.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overlay of 13C NMR spectra (CDCl3, RT) of polyacrylates and copolymers with different CM incorporations.

Long A-A and short A-A: long and short continuous acrylate sequences, respectively; A-CM: acrylate-CM alternating sequence.

Extended Data Fig. 2 Illustrative scheme of synthesis and full degradation of poly(MA-alt-CM)-based thermoset.

[BDA]0:[MA]0:[CM]0:[B(2,4-F2Ph)3]0:[PtBu3]0 = 5:200:525:2:1. In contrast to uncrosslinked analogue (Tg = 158.0 °C, Td = 274 °C), thermoset exhibited comparable Tg value (157.2 °C) and slightly lower thermal stability (Td = 251 °C).

Supplementary information

Supplementary Information

Full descriptions of the methods, computational details and optimized geometries, and Supplementary Tables 1–6 and Figs. 1–68.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZH., Sun, Y., Rajeshkumar, T. et al. Vinyl polymers with fully degradable carbon backbones enabled by aromatization-driven C–C bond cleavage. Nat. Chem. 17, 746–755 (2025). https://doi.org/10.1038/s41557-025-01751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01751-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing