Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic closed-loop recycling of polyethylene-like materials produced by acceptorless dehydrogenative polymerization of bio-derived diols

Abstract

Petroleum-derived polyolefins exhibit diverse properties and are the most important and largest volume class of plastics. However, polyolefins are difficult to efficiently recycle or break down and are now a persistent global contaminant. Broadly replacing polyolefins with bio-derived and degradable polyethylene-like materials is an important yet challenging endeavour towards sustainable plastics. Here we report a solution for circular bio-based polyethylene-like materials synthesized by acceptorless dehydrogenative polymerization from linear and branched diols and their catalytic closed-loop recycling. The polymerization and depolymerization processes utilize earth-abundant manganese complexes as catalysts. These materials exhibit a wide range of mechanical properties, encompassing thermoplastics to plastomers to elastomers. The branched diols, produced through a thiol–ene click reaction, can be polymerized to plastics with significantly enhanced tensile properties, toughness and adhesive properties. These materials could be depolymerized back to monomers through hydrogenation and were separatable with a monomer recovery of up to 99%, unaffected by the presence of dyes and additives. Overall, this system establishes a route to more sustainable plastics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the catalytic closed-loop recycling of PE-like materials with tunable properties from polymerization of bio-based linear and branched diols.
Fig. 2: Properties of the polymers are modulated over diverse regimes.
Fig. 3: Catalytic recycling of PE-like materials.

Similar content being viewed by others

Data availability

Full experimental details and the summary of the data supporting the findings of this study are available within the article and its Supplementary Information. Owing to the large number of raw data files, they are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galli, P. & Vecellio, G. Polyolefins: the most promising large-volume materials for the 21st century. J. Polym. Sci. 42, 396–415 (2004).

    Article  CAS  Google Scholar 

  3. Westlie, A. H. et al. Polyolefin innovations toward circularity and sustainable alternatives. Macromol. Rapid Commun. 43, 2200492 (2022).

    Article  CAS  Google Scholar 

  4. Qiao, J. et al. Recent advances in polyolefin technology. Polym. Chem. 2, 1611–1623 (2011).

    Article  CAS  Google Scholar 

  5. Yeung, C. W. S., Teo, J. Y. Q., Loh, X. J. & Lim, J. Y. C. Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater. Lett. 3, 1660–1676 (2021).

    Article  CAS  Google Scholar 

  6. Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article  CAS  Google Scholar 

  7. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the atlantic ocean. Nat. Commun. 11, 4073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lebreton, L. & Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5, 6 (2019).

    Article  Google Scholar 

  10. Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the Earth system. Science 373, 51–55 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Zhao, X. et al. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 428, 131928 (2022).

    Article  CAS  Google Scholar 

  13. Chen, X., Wang, Y. & Zhang, L. Recent progress in the chemical upcycling of plastic wastes. ChemSusChem 14, 4137–4151 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Schwab, S. T., Baur, M., Nelson, T. F. & Mecking, S. Synthesis and deconstruction of polyethylene-type materials. Chem. Rev. 124, 2327–2351 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, X. et al. Sustainable high-density polyethylene via chemical recycling: from modification to polymerization methods. Polymer 295, 126698 (2024).

    Article  CAS  Google Scholar 

  16. Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. & Olazar, M. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energ. Rev. 73, 346–368 (2017).

    Article  CAS  Google Scholar 

  17. Galadima, A., Masudi, A. & Muraza, O. Towards low-temperature catalysts for sustainable fuel from plastic: a review. J. Environ. Chem. Eng. 9, 106655 (2021).

    Article  CAS  Google Scholar 

  18. Arroyave, A. et al. Catalytic chemical recycling of post-consumer polyethylene. J. Am. Chem. Soc. 144, 23280–23285 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Kocen, A. L., Cui, S., Lin, T.-W., LaPointe, A. M. & Coates, G. W. Chemically recyclable ester-linked polypropylene. J. Am. Chem. Soc. 144, 12613–12618 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Jang, Y., Nguyen, S. & Hillmyer, M. A. Chemically recyclable linear and branched polyethylenes synthesized from stoichiometrically self-balanced telechelic polyethylenes. J. Am. Chem. Soc. 146, 4771–4782 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Han, X.-W. et al. Circular olefin copolymers made de novo from ethylene and α-olefins. Nat. Commun. 15, 1462 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Si, G., Li, C., Chen, M. & Chen, C. Polymer multi-block and multi-block+ strategies for the upcycling of mixed polyolefins and other plastics. Angew. Chem. Int. Ed. 62, e202311733 (2023).

    Article  CAS  Google Scholar 

  23. Johnson, A. M. & Johnson, J. A. Thermally robust yet deconstructable and chemically recyclable high-density polyethylene (HDPE)-like materials based on Si–O bonds. Angew. Chem. Int. Ed. 135, e202315085 (2023).

    Article  Google Scholar 

  24. Si, G. & Chen, C. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers. Nat. Synth. 1, 956–966 (2022).

    Article  CAS  Google Scholar 

  25. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  PubMed  Google Scholar 

  26. Nelson, T. F., Rothauer, D., Sander, M. & Mecking, S. Degradable and recyclable polyesters from multiple chain length bio- and waste-sourceable monomers. Angew. Chem. Int. Ed. 62, e202310729 (2023).

    Article  CAS  Google Scholar 

  27. Stille, J. K. Step-growth polymerization. J. Chem. Educ. 58, 862–866 (1981).

    Article  CAS  Google Scholar 

  28. Zhao, Y. et al. Chemically recyclable polyolefin-like multiblock polymers. Science 382, 310–314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beuhler, A. A. ‘Game-changing’ C18 diacid for the plastics industry? Plast. Eng. 70, 32–35 (2014).

    Article  Google Scholar 

  30. Chikkali, S. & Mecking, S. Refining of plant oils to chemicals by olefin metathesis. Angew. Chem. Int. Ed. 51, 5802–5808 (2012).

    Article  CAS  Google Scholar 

  31. Gonzalez-de-Castro, A. et al. Long-chain α–ω diols from renewable fatty acids via tandem olefin metathesis–ester hydrogenation. Green Chem. 19, 1678–1684 (2017).

    Article  CAS  Google Scholar 

  32. Hoyle, C. E. & Bowman, C. N. Thiol–ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  33. Pepels, M. P. F., Koeken, R. A. C., der Linden, S. J. J., Heise, A. & Duchateau, R. Mimicking (linear) low-density polyethylenes using modified polymacrolactones. Macromolecules 48, 4779–479 (2015).

    Article  CAS  Google Scholar 

  34. Nguyen, D. H. et al. Manganese pincer complexes for the base-free, acceptorless dehydrogenative coupling of alcohols to esters: development, scope, and understanding. ACS Catal. 7, 2022–2032 (2017).

    Article  CAS  Google Scholar 

  35. Das, U. K., Ben-David, Y., Leitus, G., Diskin-Posner, Y. & Milstein, D. Dehydrogenative cross-coupling of primary alcohols to form cross-esters catalyzed by a manganese pincer complex. ACS Catal. 9, 479–484 (2019).

    Article  CAS  Google Scholar 

  36. Chakraborty, S. et al. Well-defined iron catalysts for the acceptorless reversible dehydrogenation-hydrogenation of alcohols and ketones. ACS Catal. 4, 3994–4003 (2014).

    Article  CAS  Google Scholar 

  37. Gandeepan, P. et al. 3d transition metals for C–H activation. Chem. Rev. 119, 2192–2452 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Ysart, G. et al. Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Addit. Contam. 16, 391–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Tran, Q. H., Neidhart, E. K., Sheiko, S. S., Bras, W. & Leibfarth, F. A. Polyolefin ionomer synthesis enabled by C–H thioheteroarylation. Macromolecules 56, 8920–8927 (2023).

    Article  CAS  Google Scholar 

  40. Tsvankin, D. Y., Zubov, A. & Kitaigorodskii, A. I. Calculation of long periods in polymers and determination of the sizes of crystallites and amorphous regions. J. Polym. Sci. 16, 4081–4091 (1967).

    Google Scholar 

  41. Herrera, C., Ysinga, K. J. & Jenkins, C. L. Polysulfides synthesized from renewable garlic components and repurposed sulfur form environmentally friendly adhesives. ACS Appl. Mater. Interfaces 11, 35312–35318 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Ellison, M. M. & Taylor, L. T. Sulfur versus non-sulfur containing polyimide adhesives for bonding steel. J. Adhes. 60, 51–69 (1997).

    Article  CAS  Google Scholar 

  43. Ragaert, K., Delva, L. & van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Barnard, E., Arias, J. J. R. & Thielemans, W. Chemolytic depolymerisation of PET: a review. Green Chem. 23, 3765–3789 (2021).

    Article  CAS  Google Scholar 

  45. Rosato, D. V. & Rosato, M. G. Injection Molding Handbook 3rd edn (Springer, 2000).

Download references

Acknowledgements

We thank Z. Zhang for insightful discussions throughout the lap-shear adhesion testing. This work was supported by the National Institutes of Health under award no. R35GM144356 and RePLACE (Redesigning Polymers to Leverage a Circular Economy) funded by the Office of Science of the US Department of Energy through award no. DE-SC0022290. Funding for N.A.R. and J.M. was provided in part by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (AMO) and Bioenergy Technologies Office (BETO). This work was performed as part of the BOTTLE Consortium and was supported by AMO and BETO under contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC. We thank the Analytical Resources Core (RRID: SCR_021759) and the SAMD Core (RRID: SCR_022002) at Colorado State University for instrument access and training. G.M.M. acknowledges support from The Camille & Henry Dreyfus Foundation through a Camille Dreyfus Teacher-Scholar Award and the Dr. Robert Williams Professorship in Organic Chemistry at Colorado State University.

Author information

Authors and Affiliations

Authors

Contributions

X.L., Z.H. and G.M.M. conceived the idea. X.L. and Z.H. designed and conducted the experiments and analysed results. X.L., Z.H., E.M.R., J.M. and N.A.R. performed characterization and analysed results. X.L. and K.L.H synthesized the required complexes. X.L. wrote the initial paper and supplementary materials. All authors read and edited the paper. G.M.M. directed the project.

Corresponding author

Correspondence to Garret M. Miyake.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Georgina Gregory, Benjamin McDonald, Christophe Thomas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, Discussion and Tables 1–17.

Source data

Source Data Fig. 2.

Statistical source data.

Source Data Fig. 3.

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, Z., Rettner, E.M. et al. Catalytic closed-loop recycling of polyethylene-like materials produced by acceptorless dehydrogenative polymerization of bio-derived diols. Nat. Chem. 17, 500–506 (2025). https://doi.org/10.1038/s41557-025-01753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01753-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing