Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unravelling non-adiabatic pathways in the mutual neutralization of hydronium and hydroxide

Abstract

The mutual neutralization of hydronium and hydroxide ions is a fundamental chemical reaction. Yet, there is very limited direct experimental evidence about its intrinsically non-adiabatic mechanism. Chemistry textbooks describe the products of mutual neutralization in bulk water as two water molecules; however, this reaction has been suggested as a possible mechanism for the recently reported spontaneous formation of OH radicals at the surface of water microdroplets. Here, following three-dimensional-imaging of the coincident neutral products of reactions of isolated D3O+ and OD, we can reveal the non-adiabatic pathways for OD radical formation. Two competing pathways lead to distinct D2O + OD + D and 2OD + D2 product channels, while the proton-transfer mechanism is substantially suppressed due to a kinetic isotope effect. Analysis of the three-body momentum correlations revealed that the D2O + OD + D channel is formed by electron transfer at a short distance of ~4 Å with the formation of the intermediate unstable neutral D3O ground state, while 2OD + D2 products are obtained following electron transfer at a distance of ~10 Å via an excited state of the neutral D3O.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic potentials involved in isolated H3O+ + OH MN via an electron-transfer mechanism.
Fig. 2: Schematic representation of the experimental set-up.
Fig. 3: Three-body product assignment and total KER analysis.
Fig. 4: Dalitz plots of three-body momentum correlations in the two product channels.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Mai, S., Marquetand, P. & González, L. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115, 1215–1231 (2015).

    Article  CAS  Google Scholar 

  3. Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Schnorr, K. et al. Direct tracking of ultrafast proton transfer in water dimers. Sci. Adv. 9, eadg7864 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luzon, I., Livshits, E., Gope, K., Baer, R. & Strasser, D. Making sense of Coulomb explosion imaging. J. Phys. Chem. Lett. 10, 1361–1367 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Livshits, E., Luzon, I., Gope, K., Baer, R. & Strasser, D. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gope, K., Livshits, E., Bittner, D. M., Baer, R. & Strasser, D. An “inverse” harpoon mechanism. Sci. Adv. 8, 2–9 (2022).

    Article  Google Scholar 

  8. Yu, H. G. Spherical electron cloud hopping molecular dynamics simulation on dissociative recombination of protonated water. J. Phys. Chem. A 113, 6555–6561 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Kayanuma, M., Taketsugu, T. & Ishii, K. Ab initio surface hopping simulation on dissociative recombination of H3O+. Chem. Phys. Lett. 418, 511–518 (2006).

    Article  CAS  Google Scholar 

  10. Hassanali, A., Prakash, M. K., Eshet, H. & Parrinello, M. On the recombination of hydronium and hydroxide ions in water. Proc. Natl Acad. Sci. USA 108, 20410–20415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, M. Autoionization in liquid water. Science 291, 2121–2124 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Eklund, G. et al. Cryogenic merged-ion-beam experiments in DESIREE: final-state-resolved mutual neutralization of Li+ and D. Phys. Rev. A 102, 12823 (2020).

    Article  CAS  Google Scholar 

  13. Bogot, A. et al. The mutual neutralization of hydronium and hydroxide. Science 383, 285–289 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Poline, M. et al. Final-state-resolved mutual neutralization in I+–I collisions. Phys. Rev. A 106, 012812 (2022).

    Article  CAS  Google Scholar 

  15. Poline, M. et al. Mutual neutralization of NO+ with O. Phys. Rev. Lett. 132, 023001 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Dochain, A., Andrianarijaona, V. M. & Urbain, X. Isotope effect for the mutual neutralization reaction at low collision energies: He+ + H. Phys. Rev. A 108, 042809 (2023).

    Article  CAS  Google Scholar 

  17. Schmidt-May, A. F. et al. Observation of an isotope effect in state-selective mutual neutralization of lithium with hydrogen. Phys. Rev. A 108, 042810 (2023).

    Article  CAS  Google Scholar 

  18. Schmidt, H. T. et al. Rotationally cold OH ions in the cryogenic electrostatic ion-beam storage ring DESIREE. Phys. Rev. Lett. 119, 079901 (2017).

    Article  Google Scholar 

  19. Bogot, A., Lioubashevski, O., Heber, O., Zajfman, D. & Strasser, D. Simultaneous electrostatic trapping of merged cation & anion beams. Phys. Chem. Chem. Phys. 25, 25701–25710 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Hao, H., Leven, I. & Head-Gordon, T. Can electric fields drive chemistry for an aqueous microdroplet? Nat. Commun. 13, 280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, J. K. et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl Acad. Sci. USA 116, 19294–19298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mehrgardi, M. A., Mofidfar, M. & Zare, R. N. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. J. Am. Chem. Soc. 144, 7606–7609 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Skurski, P. & Simons, J. Two potential paths for OH radical formation on surfaces of pure water microdroplets. J. Chem. Phys. 160, 034708 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Li, K. et al. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc. Natl Acad. Sci. USA 120, 10868–10874 (2023).

    Google Scholar 

  25. Chen, X. et al. Sprayed oil–water microdroplets as a hydrogen source. J. Am. Chem. Soc. 146, 10868–10874 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, J. R., Kim, J. B. & Lineberger, W. C. High-resolution threshold photodetachment spectroscopy of OH. Phys. Rev. A 55, 2036–2043 (1997).

    Article  CAS  Google Scholar 

  27. Luo, M. & Jungen, M. The H3O Rydberg radical. Chem. Phys. 241, 297–303 (1999).

    Article  CAS  Google Scholar 

  28. Ketvirtis, A. E. & Simons, J. Dissociative recombination of H3O+. J. Phys. Chem. 103, 6552–6563 (1999).

    Article  CAS  Google Scholar 

  29. Hvelplund, P., Nielsen, S. B., Panja, S., Pedersen, J. O. P. & Uggerud, E. On the existence of the hypervalent H3O, H2DO, HD2O, and D3O radicals. Int. J. Mass spectrom. 281, 52–54 (2009).

    Article  CAS  Google Scholar 

  30. Andersen, L. H. et al. Production of water molecules from dissociative recombination of H3O+ with electrons. Phys. Rev. Lett. 77, 4891–4894 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Mann, J. E., Xie, Z., Savee, J. D., Bowman, J. M. & Continetti, R. E. Production of vibrationally excited H2O from charge exchange of H3O+ with cesium. J. Chem. Phys. 130, 041102 (2009).

    Article  PubMed  Google Scholar 

  32. Mann, J. E., Xie, Z., Savee, J. D., Bowman, J. M. & Continetti, R. E. Vibrational excitation and product branching ratios in dissociation of the isotopologs of H3O: experiment and theory. J. Phys. Chem. A 117, 7256–7266 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Buhr, H. et al. Hot water molecules from dissociative recombination of D3O+ with cold electrons. Phys. Rev. Lett. 105, 103202 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Stillinger, F. H. & Weber, T. A. Polarization model study of isotope effects in the gas phase hydronium–hydroxide neutralization reaction. J. Chem. Phys. 76, 4028–4036 (1982).

    Article  CAS  Google Scholar 

  35. Kiefer, P. M. & Hynes, J. T. Kinetic isotope effects for adiabatic proton transfer reactions in a polar environment. J. Phys. Chem. A 107, 9022–9039 (2003).

    Article  CAS  Google Scholar 

  36. Tiwari, A. K. & Sathyamurthy, N. Preferential scattering of one isotopomer over another in (He, HD+) collisions. Chem. Phys. Lett. 414, 509–513 (2005).

    Article  CAS  Google Scholar 

  37. Grussie, F. et al. Merged-beams study of the reaction of cold HD+ with C atoms reveals a pronounced intramolecular kinetic isotope effect. Phys. Rev. Lett. 132, 243001 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Ringnér, M. What is principal component analysis? Nat. Biotechnol. 26, 303–304 (2008).

    Article  PubMed  Google Scholar 

  39. Dalitz, R. H. On the analysis of τ-meson data and the nature of the τ-meson. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 44, 1068–1080 (1953).

    Article  CAS  Google Scholar 

  40. Strasser, D. et al. Breakup dynamics and the isotope effect in H3+ and D3+ dissociative recombination. Phys. Rev. A 66, 032719 (2002).

    Article  Google Scholar 

  41. Laperle, C. M., Mann, J. E., Clements, T. G. & Continetti, R. E. Three-body dissociation dynamics of the low-lying Rydberg states of H3 and D3. Phys. Rev. Lett. 93, 153202 (2004).

    Article  PubMed  Google Scholar 

  42. Strasser, D. et al. Breakup dynamics and isotope effects in D2H+ and H2D+ dissociative recombination. Phys. Rev. A 69, 064702 (2004).

    Article  Google Scholar 

  43. Gope, K., Luzon, I. & Strasser, D. N–NO & NN–O bond cleavage dynamics in two- and three-body Coulomb explosion of the N2O2+ dication. Phys. Chem. Chem. Phys. 21, 13730–13737 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Bittner, D. M., Gope, K., Livshits, E., Baer, R. & Strasser, D. Sequential and concerted C–C and C–O bond dissociation in the Coulomb explosion of 2-propanol. J. Chem. Phys. 157, 074309 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Gope, K., Bittner, D. M. & Strasser, D. Sequential mechanism in H3+ formation dynamics on the ethanol dication. Phys. Chem. Chem. Phys. 25, 6979–6986 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Gellene, G. I. & Porter, R. F. Experimental evidence for metastable states of D3O and its monohydrate by neutralized ion beam spectroscopy. J. Chem. Phys. 81, 5570–5576 (1984).

    Article  CAS  Google Scholar 

  47. Blais, N. C. Monte Carlo trajectories: the dynamics of harpooning in alkali–halogen reactions. J. Chem. Phys. 49, 9–14 (1968).

    Article  CAS  Google Scholar 

  48. Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. London. A 137, 696–702 (1932).

    Article  Google Scholar 

  49. Ben Abu, N. et al. Sweet taste of heavy water. Commun. Biol. 4, 440 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stockett, M. H. et al. Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds. Nat. Commun. 14, 395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thomas, R. D. et al. The double electrostatic ion ring experiment: a unique cryogenic electrostatic storage ring for merged ion-beams studies. Rev. Sci. Instrum. 82, 065112 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt, H. T. et al. First storage of ion beams in the double electrostatic ion-ring experiment: DESIREE. Rev. Sci. Instrum. 84, 055115 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Source of negative ions by cesium sputtering (SNICS). National Electrostatic Corporation https://www.pelletron.com/products/snics/

  54. Fisher-Levine, M. & Nomerotski, A. TimepixCam: a fast optical imager with time-stamping. J. Instrum. 11, C03016 (2016).

  55. Nomerotski, A. Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras. Nucl. Instrum. Methods Phys. Res. A 937, 26–30 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed at the Swedish National Infrastructure, DESIREE (Swedish Research Council contract nos. 2017-00621, 2021-00155 and 2023-00170). H.Z. and H.T.S. thank the Swedish Research Council for individual project grants (contract nos. 2020-03437 and 2022-02822). R.D.T., H.T.S. and H.Z. acknowledge the Project Grant ‘Probing charge- and mass-transfer reactions on the atomic level’ (2018.0028) from the Knut and Alice Wallenberg Foundation. R.D.T. acknowledges support by the Air Force Office of Scientific Research (award no. FA8655-24-1-7004). This publication is based upon work from COST Action CA18212—Molecular Dynamics in the GAS phase (MD-GAS), supported by COST (European Cooperation in Science and Technology). D.S. and A.B. acknowledge support from ISF grant 674/21 and the Minerva Center for Making Bonds by Fragmentation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the reported investigations and participated in the experimental measurements. D.S., H.T.S., H.Z. and R.D.T. acquired the funding and supervised the research. A.B. and D.S. wrote the original draft of the paper and A.B., M.P., A.D., H.Z., H.T.S., R.D.T. and D.S. reviewed and edited the paper.

Corresponding author

Correspondence to Daniel Strasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–10 and Tables 1 and 2.

Supplementary Data 1

Source data for Supplementary Figs. 2–6 and 8–10.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogot, A., Poline, M., Ji, M. et al. Unravelling non-adiabatic pathways in the mutual neutralization of hydronium and hydroxide. Nat. Chem. 17, 541–546 (2025). https://doi.org/10.1038/s41557-025-01771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01771-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing