Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Praseodymium in the formal +5 oxidation state

Abstract

Praseodymium in the +5 oxidation state is a long-sought connection between lanthanide, early-transition and actinide metal redox chemistries. Unique among the lanthanide series, evidence for molecular pentavalent praseodymium species has been observed in the gas phase and noble gas matrix isolation conditions. Here we report the low-temperature synthesis and characterization of a molecular praseodymium complex in the formal +5 oxidation state, [Pr5+(NPtBu3)4][X] (where tBu = tert-butyl and X = tetrakis(pentafluorophenyl)borate or hexafluorophosphate). Single-crystal X-ray diffraction, solution-state spectroscopic, solution magnetometric, density functional theory and multireference wavefunction-based methods indicate a highly multiconfigurational singlet ground state. An inverted ligand field drives this unique electronic structure, which establishes a critical link in understanding the bonding of high-valent metal complexes across the periodic table.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and solution characterization of 1.
Fig. 2: Structure and electronic absorption spectra of 3.
Fig. 3: MOs of 1M+.
Fig. 4: π orbital sets for 3.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the main text and the Supplementary Information. X-ray data are available free of charge from the Cambridge Crystallographic Data Centre under references 2381100 (3b) and 2381101 (3a). Additional spectroscopic, crystallographic and computational data are included in the supplementary materials. Computational coordinates and energies and source data generated during the current study have been deposited in the figshare database (https://doi.org/10.6084/m9.figshare.26894113). Source data are provided with this paper.

References

  1. Jørgensen, C. K. in Oxidation Numbers and Oxidation States (ed. Jørgensen, C. K.) 6–13 (Springer, 1969).

  2. Karen, P., McArdle, P. & Takats, J. Comprehensive definition of oxidation state (IUPAC Recommendations 2016). Pure Appl. Chem. 88, 831–839 (2016).

    Article  CAS  Google Scholar 

  3. Keilwerth, M. et al. The synthesis and characterization of an iron(VII) nitrido complex. Nat. Chem. 16, 514–520 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, G. et al. Identification of an iridium-containing compound with a formal oxidation state of IX. Nature 514, 475–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Leach, I. F. & Klein, J. E. M. N. Oxidation states: intrinsically ambiguous? ACS Cent. Sci. 10, 1406–1414 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fieser, M. E. et al. Evaluating the electronic structure of formal LnII ions in LnII(C5H4SiMe3)31− using XANES spectroscopy and DFT calculations. Chem. Sci. 8, 6076–6091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thyssen, P. & Binnemans, K. in Handbook on the Physics and Chemistry of Rare Earths (eds Gschneidner, K. A. et al.) Vol. 41 1–93 (Elsevier, 2011).

  8. Nilson, L. F. & Pettersson, O. Ueber das Atomgewicht und die wesentlichen Eigenschaften des Berylliums. Ber. Dtsch. Chem. Ges. 13, 1451–1459 (1880).

    Article  Google Scholar 

  9. Cheisson, T. & Schelter, E. J. Rare earth elements: Mendeleev’s bane, modern marvels. Science 363, 489–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Gompa, T. P., Ramanathan, A., Rice, N. T. & La Pierre, H. S. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans. 49, 15945–15987 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Palumbo, C. T., Zivkovic, I., Scopelliti, R. & Mazzanti, M. Molecular complex of Tb in the +4 oxidation state. J. Am. Chem. Soc. 141, 9827–9831 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Willauer, A. R. et al. Accessing the +IV oxidation state in molecular complexes of praseodymium. J. Am. Chem. Soc. 142, 5538–5542 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Rice, N. T. et al. Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J. Am. Chem. Soc. 141, 13222–13233 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Rice, N. T. et al. Spectroscopic and electrochemical characterization of a Pr4+ imidophosphorane complex and the redox chemistry of Nd3+ and Dy3+ complexes. Dalton Trans. 51, 6696–6706 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Boggiano, A. C. et al. A four-coordinate Pr4+ imidophosphorane complex. Angew. Chem. Int. Ed. 63, e202409789 (2024).

    CAS  Google Scholar 

  16. Ye, L.-W. et al. Is pentavalent Pr(V) feasible in solid CsPrF6? Dalton Trans. 53, 15198–15204 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Q. et al. Pentavalent lanthanide compounds: formation and characterization of praseodymium(V) oxides. Angew. Chem. Int. Ed. 55, 6896–6900 (2016).

    Article  CAS  Google Scholar 

  18. Willson, S. P. & Andrews, L. Characterization of the reaction products of laser-ablated early lanthanide metal atoms with molecular oxygen. Infrared spectra of LnO, LnO+, LnO, LnO2, LnO2+, LnO2, LnO3, and (LnO)2 in solid argon. J. Phys. Chem. A 103, 3171–3183 (1999).

    Article  CAS  Google Scholar 

  19. Su, J., Hu, S., Huang, W., Zhou, M. & Li, J. On the oxidation states of metal elements in MO3 (M = V, Nb, Ta, Db, Pr, Gd, Pa) anions. Sci. China Chem. 59, 442–451 (2016).

    Article  CAS  Google Scholar 

  20. Hu, S.-X. et al. Pentavalent lanthanide nitride-oxides: NPrO and NPrO complexes with N≡Pr triple bonds. Chem. Sci. 8, 4035–4043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vent-Schmidt, T. & Riedel, S. Investigation of praseodymium fluorides: a combined matrix-isolation and quantum-chemical study. Inorg. Chem. 54, 11114–11120 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Rice, N. T. et al. Homoleptic imidophosphorane stabilization of tetravalent cerium. Inorg. Chem. 58, 5289–5304 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Boggiano, A. C. et al. Structural distortion by alkali metal cations modulates the redox and electronic properties of Ce3+ imidophosphorane complexes. Chem. Sci. 14, 11708–11717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rice, N. T. et al. Comparison of tetravalent cerium and terbium ions in a conserved, homoleptic imidophosphorane ligand field. Chem. Sci. 11, 6149–6159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Otte, K. S. et al. Divergent stabilities of tetravalent cerium, uranium, and neptunium imidophosphorane complexes. Angew. Chem. Int. Ed. 62, e202306580 (2023).

    Article  CAS  Google Scholar 

  26. Niklas, J. E. et al. A tetrahedral neptunium(V) complex. Nat. Chem. 16, 1490–1495 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Boggiano, A. C., Niklas, J. E., Bernbeck, M. G. & La Pierre, H. S. U4+/5+/6+ in a conserved pseudotetrahedral imidophosphorane coordination sphere. Inorg. Chem. 64, 2489–2495 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aistars, A., Doedens, R. J. & Doherty, N. M. Synthesis and characterization of vanadium(V) mono-, bis-, tris-, and tetrakis(phosphoraniminato) complexes. Inorg. Chem. 33, 4360–4365 (1994).

    Article  CAS  Google Scholar 

  29. Hawkeswood, S. B. & Stephan, D. W. Synthesis and characterization of vanadium(V)−phosphinimide complexes. Inorg. Chem. 42, 5429–5433 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Rehder, D. A survey of 51V NMR spectroscopy. Bull. Magn. Reson. 4, 3383 (1982).

    Google Scholar 

  31. Schubert, E. M. Utilizing the Evans method with a superconducting NMR spectrometer in the undergraduate laboratory. J. Chem. Educ. 69, 62 (1992).

    Article  CAS  Google Scholar 

  32. Otte, K. S. et al. Proton-coupled electron transfer at the Pu5+/4+ couple. J. Am. Chem. Soc. 146, 21859–21867 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, L., Powell, D. R. & Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. https://doi.org/10.1039/B617136B (2007).

  34. Viste, A. & Gray, H. B. The electronic structure of permanganate ion. Inorg. Chem. 3, 1113–1123 (1964).

    Article  CAS  Google Scholar 

  35. Snyder, J. P. Elusiveness of CuIII complexation; preference for trifluoromethyl oxidation in the formation of [Cu(CF3)4]− salts. Angew. Chem. Int. Ed. 34, 80–81 (1995).

    Article  CAS  Google Scholar 

  36. Hoffmann, R. et al. From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116, 8173–8192 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. DiMucci, I. M. et al. The myth of d8 copper(III). J. Am. Chem. Soc. 141, 18508–18520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DuBois, J. L. et al. A systematic K-edge X-ray absorption spectroscopic study of Cu(III) sites. J. Am. Chem. Soc. 122, 5775–5787 (2000).

    Article  CAS  Google Scholar 

  39. Lemon, C. M. et al. Electronic structure of copper corroles. Angew. Chem. Int. Ed. 55, 2176–2180 (2016).

    Article  CAS  Google Scholar 

  40. Lim, H. et al. X-ray absorption spectroscopy as a probe of ligand noninnocence in metallocorroles: the case of copper corroles. Inorg. Chem. 58, 6722–6730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, W., De Hont, J. T., Parveen, R., Vlaisavljevich, B. & Tolman, W. B. Sulfur-containing analogues of the reactive [CuOH]2+ core. Inorg. Chem. 60, 5217–5223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pierloot, K., Zhao, H. & Vancoillie, S. Copper corroles: the question of noninnocence. Inorg. Chem. 49, 10316–10329 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Bhowmick, R., Roy Chowdhury, S. & Vlaisavljevich, B. Molecular geometry and electronic structure of copper corroles. Inorg. Chem. 62, 13877–13891 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Finney, B. A., Roy Chowdhury, S., Kirkvold, C. & Vlaisavljevich, B. CASPT2 molecular geometries of Fe(II) spin-crossover complexes. Phys. Chem. Chem. Phys. 24, 1390–1398 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Grimme, S. & Hansen, A. A practicable real-space measure and visualization of static electron-correlation effects. Angew. Chem. Int. Ed. 54, 12308–12313 (2015).

    Article  CAS  Google Scholar 

  46. Booth, C. H., Walter, M. D., Daniel, M., Lukens, W. W. & Andersen, R. A. Self-contained Kondo effect in single molecules. Phys. Rev. Lett. 95, 267202 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Walter, M. D., Booth, C. H., Lukens, W. W. & Andersen, R. A. Cerocene revisited: the electronic structure of and interconversion between Ce2(C8H8)3 and Ce(C8H8)2. Organometallics 28, 698–707 (2009).

    Article  CAS  Google Scholar 

  48. Sergentu, D.-C., Booth, C. H. & Autschbach, J. Probing multiconfigurational states by spectroscopy: the cerium XAS L3-edge puzzle. Chem. Eur. J. 27, 7239–7251 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. SAINT v.8.40B (Bruker, 2016).

  51. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. & Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr. A 71, 59–75 (2015).

    Article  CAS  Google Scholar 

  52. Dolomanov, O., Bourhis, L., Gildea, R., Howard, J. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  53. Kleemiss, F. et al. Accurate crystal structures and chemical properties from NoSpherA2. Chem. Sci. 12, 1675–1692 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental work was supported by a National Science Foundation (NSF) CAREER grant under award number CHE-1943452 (A.C.B., H.T. and H.S.L.P.). H.S.L.P. is an Alfred P. Sloan Research Fellow. The computational work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry Program, under award number DE-SC0025311 (S.R.C. and B.V.). I.A.P. acknowledges the start-up funds and Meyer Early Career Launch Fellowship at Washington State University. Computations supporting this project were performed on high-performance computing systems at the University of South Dakota, funded by NSF award OAC-1626516 (S.R.C. and B.V.) and using the computational resources at the Ohio Supercomputer Center and the ARCC HPC cluster at the University of Akron (C.M.S. and I.A.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.C.B. and H.S.L.P. conceived the idea presented in this publication. H.S.L.P., I.A.P. and B.V. supervised the project and acquired funding. A.C.B., H.T. and H.S.L.P. developed the syntheses. A.C.B., J.E.L. and H.W. performed the spectroscopic and electrochemical characterization and analysis. A.C.B., J.E.N. and F.K. performed the crystallographic characterization. C.M.S., S.R.C., B.V. and I.A.P. performed the theoretical calculations and analysis. Analysis and visualization were performed by A.C.B., J.E.N., C.M.S., S.R.C., F.K., I.A.P., B.V. and H.S.L.P. The first draft was written by A.C.B., J.E.N., C.M.S. and S.R.C., with contributions from all authors. The paper was reviewed and edited by H.S.L.P., I.A.P. and B.V. with input from all authors.

Corresponding authors

Correspondence to Bess Vlaisavljevich, Ivan A. Popov or Henry S. La Pierre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Nicholas Chilton, Stephan Hohloch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 α-spin MO energy diagrams for 4, 1, and 1M+.

AO contributions specified by yellow (Pr) and blue (ligands) fractions in the MO horizontal bars and electrons residing in the occupied MOs (OMOs) by vertical gray lines. The highest occupied ligand-dominant orbital in each complex is shifted to 0 eV for comparison. The extended black box points out eight OMOs describing Pr–N π interactions across the complexes, with the corresponding average Pr AO contributions shown above. The dashed boxes display two lowest unoccupied MOs (UMOs), with the corresponding average Pr AO contributions shown below. Orbital energy degeneracy is set to 0.05 eV to aid visualization. Full unperturbed MO diagrams are depicted in Supplementary Figs. 8486.

Extended Data Table 1 Spin-lattice relaxation times (T1) from solution inversion recovery NMR measurements in THF-d8 at –50 °C

Supplementary information

Supplementary Information

Materials, Supplementary Text, Figs. 1–95 and Tables 1–23.

Supplementary Data 1

Crystallographic data for compound 3a (CCDC 2381101).

Supplementary Data 2

Crystallographic data for compound 3b (CCDC 2381100).

Source data

Source Data Fig. 1

Referenced cyclic voltammetry data.

Source Data Fig. 2

Source UV–vis data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boggiano, A.C., Studvick, C.M., Roy Chowdhury, S. et al. Praseodymium in the formal +5 oxidation state. Nat. Chem. 17, 1005–1010 (2025). https://doi.org/10.1038/s41557-025-01797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01797-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing