Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reactivity of syn-CH3CHOO with H2O enhanced through a roaming mechanism in the entrance channel

Abstract

Criegee intermediates are highly reactive species that play a pivotal role in the chemistry of the atmosphere, substantially impacting global climate and air quality. They are formed through the reaction of ozone with alkenes and considerably influence the formation of hydroxyl radicals and aerosols through their unimolecular decomposition and their reaction with key atmospheric components, respectively. However, their interaction with water vapour, a major atmospheric component, remains inadequately characterized. Here, using both time-dependent laser-induced fluorescence experiments and full-dimensional dynamics calculations, we investigate the reaction of syn-CH3CHOO, a prevalent Criegee intermediate, with water vapour. Our results reveal a much higher reaction rate than previously estimated, challenging the conventional notion that unimolecular decomposition dominates syn-CH3CHOO removal. Notably, we uncover a complex mechanism involving a roaming process that enhances reactivity. Our findings necessitate a revised assessment of reactions involving syn-mono- and di-substituted Criegee intermediates with water, which are crucial for accurately estimating the OH budget derived from these intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental observed consumption of syn-CH3CHOO by water, and comparison with previously calculated results.
Fig. 2: Potential energy surface of the syn-CH3CHOO + H2O reaction.
Fig. 3: Rate coefficients for the syn-CH3CHOO + H2O reaction.
Fig. 4: Snapshots of a typical trajectory illustrating the roaming reaction mechanism.

Similar content being viewed by others

Data availability

Data supporting the findings of this study can be accessed at figshare at https://doi.org/10.6084/m9.figshare.28630718.v1 (ref. 61). Source data are provided with this paper.

References

  1. Criegee, R. Mechanism of ozonolysis. Angew. Chem. Int. Ed. 14, 745–752 (1975).

    Google Scholar 

  2. Stone, D., Whalley, L. K. & Heard, D. E. Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem. Soc. Rev. 41, 6348–6404 (2012).

    CAS  PubMed  Google Scholar 

  3. Finlayson-Pitts, B. J. & Pitts Jr, J. N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications (Elsevier, 2000).

  4. Heard, D. et al. High levels of the hydroxyl radical in the winter urban troposphere. Geophys. Res. Lett. 31, L18112 (2004).

    Google Scholar 

  5. Emmerson, K. & Carslaw, N. Night-time radical chemistry during the TORCH campaign. Atmos. Environ. 43, 3220–3226 (2009).

    CAS  Google Scholar 

  6. Cox, R. A. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: volume VII—Criegee intermediates. Atmos. Chem. Phys. 20, 13497–13519 (2020).

    CAS  Google Scholar 

  7. Percival, C. J. et al. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation. Faraday Discuss. 165, 45–73 (2013).

    CAS  PubMed  Google Scholar 

  8. Caravan, R. et al. Observational evidence for Criegee intermediate oligomerization reactions relevant to aerosol formation in the troposphere. Nat. Geosci. 17, 219–226 (2024).

    CAS  Google Scholar 

  9. Chhantyal-Pun, R. et al. Criegee intermediate reactions with carboxylic acids: a potential source of secondary organic aerosol in the atmosphere. ACS Earth Space Chem. 2, 833–842 (2018).

    CAS  Google Scholar 

  10. Mauldin, R. L. et al. A new atmospherically relevant oxidant of sulphur dioxide. Nature 488, 193–196 (2012).

    CAS  PubMed  Google Scholar 

  11. Calvert, J. G. et al. Chemical mechanisms of acid generation in the troposphere. Nature 317, 27–35 (1985).

    CAS  Google Scholar 

  12. Khan, M., Percival, C., Caravan, R., Taatjes, C. & Shallcross, D. Criegee intermediates and their impacts on the troposphere. Environ. Sci. Process. Impacts 20, 437–453 (2018).

    CAS  PubMed  Google Scholar 

  13. Welz, O. et al. Direct kinetic measurements of Criegee intermediate (CH2OO) formed by reaction of CH2I with O2. Science 335, 204–207 (2012).

    CAS  PubMed  Google Scholar 

  14. Shallcross, D. E., Khan, M. A. H., Taatjes, C. A. & Percival, C. J. New Insights Into the Role of Stabilized Criegee Intermediates in Tropospheric Chemistry from Direct Laboratory Studies (World Scientific, 2019).

  15. Osborn, D. L. & Taatjes, C. A. The physical chemistry of Criegee intermediates in the gas phase. Int. Rev. Phys. Chem. 34, 309–360 (2015).

    CAS  Google Scholar 

  16. Taatjes, C. A. Criegee intermediates: what direct production and detection can teach us about reactions of carbonyl oxides. Annu. Rev. Phys. Chem. 68, 183–207 (2017).

    CAS  PubMed  Google Scholar 

  17. Lester, M. I. & Klippenstein, S. J. Unimolecular decay of criegee intermediates to OH radical products: prompt and thermal decay processes. Acc. Chem. Res. 51, 978–985 (2018).

    CAS  PubMed  Google Scholar 

  18. Chhantyal-Pun, R. et al. Criegee intermediates: production, detection and reactivity. Int. Rev. Phys. Chem. 39, 383–422 (2020).

    Google Scholar 

  19. Cabezas, C., Nakajima, M. & Endo, Y. Criegee intermediates meet rotational spectroscopy. Int. Rev. Phys. Chem. 39, 351–384 (2020).

    CAS  Google Scholar 

  20. Su, Y. T. et al. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry. Nat. Chem. 6, 477–483 (2014).

    CAS  PubMed  Google Scholar 

  21. Long, B., Bao, J. L. & Truhlar, D. G. Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry. Nat. Commun. 10, 2003 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Kidwell, N. M., Li, H. W., Wang, X. H., Bowman, J. M. & Lester, M. I. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products. Nat. Chem. 8, 509–514 (2016).

    CAS  PubMed  Google Scholar 

  23. Lin, H. Y. et al. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity. Nat. Commun. 6, 7012 (2015).

    CAS  PubMed  Google Scholar 

  24. Shabin, M., Kumar, A., Hakkim, H., Rudich, Y. & Sinha, V. Sources, sinks, and chemistry of stabilized Criegee intermediates in the Indo-Gangetic Plain. Sci. Total Environ. 896, 165281 (2023).

    CAS  PubMed  Google Scholar 

  25. Zhou, X., Liu, Y., Dong, W. & Yang, X. Unimolecular reaction rate measurement of syn-CH3CHOO. J. Phys. Chem. Lett. 10, 4817–4821 (2019).

    CAS  PubMed  Google Scholar 

  26. Li, Y.-L., Kuo, M.-T. & Lin, J. J.-M. Unimolecular decomposition rates of a methyl-substituted Criegee intermediate syn-CH3CHOO. RSC Adv. 10, 8518–8524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stephenson, T. A. & Lester, M. I. Unimolecular decay dynamics of Criegee intermediates: energy-resolved rates, thermal rates, and their atmospheric impact. Int. Rev. Phys. Chem. 39, 1–33 (2020).

    CAS  Google Scholar 

  28. Sheps, L., Scully, A. M. & Au, K. UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH3CHOO. Phys. Chem. Chem. Phys. 16, 26701–26706 (2014).

    CAS  PubMed  Google Scholar 

  29. Taatjes, C. A. et al. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340, 177–180 (2013).

    CAS  PubMed  Google Scholar 

  30. Anglada, J. M. & Sole, A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys. Chem. Chem. Phys. 18, 17698–17712 (2016).

    CAS  PubMed  Google Scholar 

  31. Lin, L. C. et al. Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO. Phys. Chem. Chem. Phys. 18, 4557–4568 (2016).

    CAS  PubMed  Google Scholar 

  32. Kuwata, K. T., Hermes, M. R., Carlson, M. J. & Zogg, C. K. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide. J. Phys. Chem. A 114, 9192–9204 (2010).

    CAS  PubMed  Google Scholar 

  33. Long, B., Bao, J. L. & Truhlar, D. G. Atmospheric chemistry of Criegee intermediates: unimolecular reactions and reactions with water. J. Am. Chem. Soc. 138, 14409–14422 (2016).

    CAS  PubMed  Google Scholar 

  34. Ryzhkov, A. B. & Ariya, P. A. A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer. Phys. Chem. Chem. Phys. 6, 5042–5050 (2004).

    CAS  Google Scholar 

  35. Chao, W., Hsieh, J. T., Chang, C. H. & Lin, J. J. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor. Science 347, 751–754 (2015).

    CAS  PubMed  Google Scholar 

  36. Liu, F., Beames, J. M., Petit, A. S., McCoy, A. B. & Lester, M. I. Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products. Science 345, 1596–1598 (2014).

    CAS  PubMed  Google Scholar 

  37. Vereecken, L., Glowacki, D. R. & Pilling, M. J. Theoretical chemical kinetics in tropospheric chemistry: methodologies and applications. Chem. Rev. 115, 4063–4114 (2015).

    CAS  PubMed  Google Scholar 

  38. Lin, L. C., Chao, W., Chang, C. H., Takahashi, K. & Lin, J. J. Temperature dependence of the reaction of anti-CH3CHOO with water vapor. Phys. Chem. Chem. Phys. 18, 28189–28197 (2016).

    CAS  PubMed  Google Scholar 

  39. Liu, Y. et al. A kinetic study of the CH2OO Criegee intermediate reaction with SO2, (H2O)2, CH2I2 and I atoms using OH laser induced fluorescence. Phys. Chem. Chem. Phys. 19, 20786–20794 (2017).

    CAS  PubMed  Google Scholar 

  40. Yin, C. & Takahashi, K. Effect of unsaturated substituents in the reaction of Criegee intermediates with water vapor. Phys. Chem. Chem. Phys. 20, 20217–20227 (2018).

    CAS  PubMed  Google Scholar 

  41. Chen, R., Shao, K., Fu, B. & Zhang, D. H. Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms. J. Chem. Phys. 152, 204307 (2020).

    CAS  PubMed  Google Scholar 

  42. Fu, B. & Zhang, D. H. Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces. Natl Sci. Rev. 10, nwad321 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mikosch, J. et al. Imaging nucleophilic substitution dynamics. Science 319, 183–186 (2008).

    CAS  PubMed  Google Scholar 

  44. Townsend, D. et al. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306, 1158–1161 (2004).

    CAS  PubMed  Google Scholar 

  45. Li, Z. et al. Roaming in highly excited states: the central atom elimination of triatomic molecule decomposition. Science 383, 746–750 (2024).

    CAS  PubMed  Google Scholar 

  46. Welz, O. et al. Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and acetic acid near the collision limit: direct kinetics measurements and atmospheric implications. Angew. Chem. Int. Ed. 53, 4547–4550 (2014).

    CAS  Google Scholar 

  47. Greenwald, E. E., North, S. W., Georgievskii, Y. & Klippenstein, S. J. A two transition state model for radical–molecule reactions: applications to isomeric branching in the OH− isoprene reaction. J. Phys. Chem. A 111, 5582–5592 (2007).

    CAS  PubMed  Google Scholar 

  48. Greenwald, E. E., North, S. W., Georgievskii, Y. & Klippenstein, S. J. A two transition state model for radical−molecule reactions: a case study of the addition of OH to C2H4. J. Phys. Chem. A 109, 6031–6044 (2005).

    CAS  PubMed  Google Scholar 

  49. Anglada, J. M., Aplincourt, P., Bofill, J. M. & Cremer, D. Atmospheric formation of OH radicals and H2O2 from alkene ozonolysis under humid conditions. ChemPhysChem 3, 215–221 (2002).

    CAS  PubMed  Google Scholar 

  50. Anglada, J. M., Gonzalez, J. & Torrent-Sucarrat, M. Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water. Phys. Chem. Chem. Phys. 13, 13034–13045 (2011).

    CAS  PubMed  Google Scholar 

  51. Novelli, A., Vereecken, L., Lelieveld, J. & Harder, H. Direct observation of OH formation from stabilised Criegee intermediates. Phys. Chem. Chem. Phys. 16, 19941–19951 (2014).

    CAS  PubMed  Google Scholar 

  52. 1stOpt version 7.0 (7D-Soft High Technology, 2016).

  53. Schmitt, G. & Comes, F. Photolysis of CH2I2 and 1,1-C2H4I2 at 300 nm. J. Photochem. 14, 107–123 (1980).

    CAS  Google Scholar 

  54. Barker, J. R. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17 JPL 10-6 (NASA, 2011); http://jpldataeval.jpl.nasa.gov

  55. Knizia, G., Adler, T. B. & Werner, H. J. Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130, 054104 (2009).

    PubMed  Google Scholar 

  56. Zhang, D. H. & Guo, H. Recent advances in quantum dynamics of bimolecular reactions. Annu. Rev. Phys. Chem. 67, 135–158 (2016).

    CAS  PubMed  Google Scholar 

  57. Suleimanov, Y. V., Aoiz, F. J. & Guo, H. Chemical reaction rate coefficients from ring polymer molecular dynamics: theory and practical applications. J. Phys. Chem. A 120, 8488–8502 (2016).

    CAS  PubMed  Google Scholar 

  58. Bowman, J. M. & Schatz, G. C. Theoretical studies of polyatomic bimolecular reaction dynamics. Annu. Rev. Phys. Chem. 46, 169–196 (1995).

    CAS  PubMed  Google Scholar 

  59. Bao, J. L. & Truhlar, D. G. Variational transition state theory: theoretical framework and recent developments. Chem. Soc. Rev. 46, 7548–7596 (2017).

    CAS  PubMed  Google Scholar 

  60. Fu, B. et al. Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: experiment validates theory. Proc. Natl Acad. Sci. USA 109, 9733–9738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, Y. et al. Reactivity of syn-CH3CHOO with H2O enhanced through a roaming mechanism in the entrance channel. figshare https://doi.org/10.6084/m9.figshare.28630718.v1 (2025).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 22288201 (D.H.Z.), 22173099 (B.F.), 21873098 (W.D.) and 22203092 (Y.F.)); the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant no. GJJSTD20220001 to X.Y.); the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB0970203 to B.F.), the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0303305 to D.H.Z.), Guangdong Science and Technology Program (grant nos. 2019ZT08L455 and 2019JC01X091 to X.Y.) and the Shenzhen Science and Technology Program (grant no. ZDSYS20200421111001787 to X.Y.). We thank the staff members of the Free Radical Detection Station (31127.02.DCLS.FRDS) at the Dalian Coherent Light Source (31127.02.DCLS) for providing technical support during the experiment. We acknowledge Y. V. Suleymanov, D. Manolopoulos and W. Fang for insightful discussions about the possible ring-polymer molecular dynamics and instanton theory calculations.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., D.H.Z., W.D. and B.F. conceived and supervised the research. Yi.L., H.J., Yu.L., X.Z., H.L., X.W. and W.D. performed the experiments. Yi.L., H.J., Yu.L., X.Z., H.L., X.W., W.D. and X.Y. performed the experimental data analysis and interpretation. L.L., Y.F., H.W. and B.F. performed the potential energy surface construction and dynamics simulations. L.L., Y.F., H.W., X.L., R.T.S., B.F. and D.H.Z. discussed the theoretical results and analysis. X.Y., W.D. and B.F. wrote the paper, with contributions from all authors. All authors contributed to discussions about the content of the paper.

Corresponding authors

Correspondence to Bina Fu, Wenrui Dong, Dong H. Zhang or Xueming Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Gabor Czako and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Discussion and Tables 1–6.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, L., Fu, Y. et al. Reactivity of syn-CH3CHOO with H2O enhanced through a roaming mechanism in the entrance channel. Nat. Chem. 17, 897–903 (2025). https://doi.org/10.1038/s41557-025-01798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01798-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing