Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled anionic polymerization mediated by carbon dioxide

Abstract

Anionic polymerizations of vinyl monomers are powerful synthetic platforms for making well-defined materials. However, these reactions are extremely sensitive to moisture and oxygen, require the use of highly purified reagents, must be run at low temperatures, and use hazardous and difficult-to-handle alkyl lithium initiators. Together, these drawbacks limit the practicality of these polymerizations and impede their widespread usage. On this basis, the development of a user-friendly anionic polymerization process for methacrylates is a grand challenge. Here we report an anionic polymerization of methacrylates mediated by CO2 that can be run at elevated temperatures and uses an easy-to-handle solid initiator. The reversible addition of CO2 to the enolate chain end efficiently tempers the reactivity of the anion, giving polymers with narrow molar mass distributions and excellent molecular weight targeting at elevated temperatures. Our scalable and more user-friendly CO2-mediated method improves the accessibility and safety of anionic polymerizations and facilitates the production of a variety of polymeric materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a more user-friendly anionic polymerization.
Fig. 2: CO2-mediated anionic polymerization of methacrylates.
Fig. 3: CMAP with initiator 7.
Fig. 4: Chain-end manipulation and monomer scope overview.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available in the main text or Supplementary Information. 1H and 13C NMR files and text files of GPC chromatograms, in situ CO2 evolution traces, and MALDI-TOF MS spectra have been deposited in eCommons (Cornell’s Digital Repository) at https://doi.org/10.7298/s733-8m37 (ref. 53). Source data are provided with this paper.

References

  1. Ali, U., Karim, K. J. B. A. & Buang, N. A. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 55, 678–705 (2015).

    Article  CAS  Google Scholar 

  2. Rösler, A., Vandermeulen, G. W. M. & Klok, H.-A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 64, 270–279 (2012).

    Article  Google Scholar 

  3. Perumal, S., Atchudan, R. & Lee, W. A review of polymeric micelles and their applications. Polymers 14, 2510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Webster, O. W. The discovery and commercialization of group transfer polymerization. J. Polym. Sci. A 38, 2855–2860 (2000).

    Article  CAS  Google Scholar 

  5. Destarac, M. Controlled radical polymerization: industrial stakes, obstacles and achievements. Macromol. React. Eng. 4, 165–179 (2010).

    Article  CAS  Google Scholar 

  6. Truong, N. P., Jones, G. R., Bradford, K. G. E., Konkolewicz, D. & Anastasaki, A. A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat. Rev. Chem. 5, 859–869 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Shanmugam, S. & Matyjaszewski, K. in Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies Vol. 1 (eds Matyjaszewski, K. et al.) 1–39 (American Chemical Society, 2018).

  8. Ntetsikas, K., Ladelta, V., Bhaumik, S. & Hadjichristidis, N. Quo vadis carbanionic polymerization? ACS Poly. Au 3, 158–181 (2023).

    Article  CAS  Google Scholar 

  9. Hirao, A., Goseki, R. & Ishizone, T. Advances in living anionic polymerization: from functional monomers, polymerization systems, to macromolecular architectures. Macromolecules 47, 1883–1905 (2014).

    Article  CAS  Google Scholar 

  10. Hadjichristidis, N., Iatrou, H., Pitsikalis, M. & Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 31, 1068–1132 (2006).

    Article  CAS  Google Scholar 

  11. Ménard, A. D. & Trant, J. F. A review and critique of academic lab safety research. Nat. Chem. 12, 17–25 (2020).

    Article  PubMed  Google Scholar 

  12. Rathman, T. ‘L.’ & Schwindeman, J. A. Preparation, properties, and safe handling of commercial organolithiums: alkyllithiums, lithium sec-organoamides, and lithium alkoxides. Org. Process Res. Dev. 18, 1192–1210 (2014).

    Article  CAS  Google Scholar 

  13. Slavík, P., Trowse, B. R., O’Brien, P. & Smith, D. K. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat. Chem. 15, 319–325 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ratkanthwar, K., Hadjichristidis, N. & Mays, J. W. in Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications (eds Hadjichristidis, N. & Hirao, A.) 19–60 (Springer, 2015).

  15. Baskaran, D. & Müller, A. H. E. Anionic vinyl polymerization—50 years after Michael Szwarc. Prog. Polym. Sci. 32, 173–219 (2007).

    Article  CAS  Google Scholar 

  16. Grubbs, R. B. & Grubbs, R. H. 50th anniversary perspective: living polymerization—emphasizing the molecule in macromolecules. Macromolecules 50, 6979–6997 (2017).

    Article  CAS  Google Scholar 

  17. Baskaran, D. Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog. Polym. Sci. 28, 521–581 (2003).

    Article  CAS  Google Scholar 

  18. Varshney, S. K., Hautekeer, J. P., Fayt, R., Jerome, R. & Teyssie, P. Anionic polymerization of (meth)acrylic monomers. 4. Effect of lithium salts as ligands on the “living” polymerization of methyl methacrylate using monofunctional initiators. Macromolecules 23, 2618–2622 (1990).

    Article  CAS  Google Scholar 

  19. Zune, C., Archambeau, C., Dubois, P. & Jérôme, R. Effect of the solvent polarity on the living ligated anionic polymerization of tert-butyl methacrylate and copolymerization with methyl methacrylate. J. Polym. Sci. A 39, 1774–1785 (2001).

    Article  Google Scholar 

  20. Vlček, P. & Lochmann, L. Anionic polymerization of (meth)acrylate esters in the presence of stabilizers of active centres. Prog. Polym. Sci. 24, 793–873 (1999).

    Article  Google Scholar 

  21. Lochmann, L. & Lím, D. Preparation and properties of pure lithio esters of some carboxylic acids. J. Organomet. Chem. 50, 9–16 (1973).

    Article  CAS  Google Scholar 

  22. Carlotti, S., Desbois, P., Warzelhan, V. & Deffieux, A. Retarded anionic polymerization (RAP) of styrene and dienes. Polymer 50, 3057–3067 (2009).

    Article  CAS  Google Scholar 

  23. Li, Z. et al. Anionic living polymerization of alkyl methacrylate at ambient temperature and its mechanism research. J. Polym. Sci. A 57, 1130–1139 (2019).

    Article  Google Scholar 

  24. Kralisch, D., Ott, D. & Gericke, D. Rules and benefits of life cycle assessment in green chemical process and synthesis design: a tutorial review. Green Chem. 17, 123–145 (2015).

    Article  CAS  Google Scholar 

  25. Webster, O. W. in New Synthetic Methods Vol. 167 (eds Abe, A. et al.) 1–34 (Springer, 2003).

  26. McGraw, M. L. & Chen, E. Y.-X. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules 53, 6102–6122 (2020).

    Article  CAS  Google Scholar 

  27. Zhang, Y., Miyake, G. M. & Chen, E. Y.-X. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew. Chem. Int. Ed. 49, 10158–10162 (2010).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans. 41, 9119–9134 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sanford, M. J., Van Zee, N. J. & Coates, G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci. 9, 134–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Varghese, J. K. et al. A new role for CO2: controlling agent of the anionic ring-opening polymerization of cyclic esters. Macromolecules 50, 6752–6761 (2017).

    Article  CAS  Google Scholar 

  31. Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    Article  CAS  Google Scholar 

  33. Ouchi, M. & Sawamoto, M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym. J. 50, 83–94 (2018).

    Article  CAS  Google Scholar 

  34. Uchiyama, M., Ohira, N., Yamashita, K., Sagawa, K. & Kamigaito, M. Proton transfer anionic polymerization with C-H bond as the dormant species. Nat. Chem. 16, 1630–1637 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Sakakura, T., Choi, J.-C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Naumann, S., Schmidt, F. G., Schowner, R., Frey, W. & Buchmeiser, M. R. Polymerization of methyl methacrylate by latent pre-catalysts based on CO2-protected N-heterocyclic carbenes. Polym. Chem. 4, 2731–2740 (2013).

    Article  CAS  Google Scholar 

  38. Wadhwa, K. et al. Influence of substitution of various functional groups on inhibition efficiency of TEMPO analogues on styrene polymerization. J. Polym. Res. 24, 201 (2017).

    Article  Google Scholar 

  39. Hunter, D. H., Hamity, M., Patel, V. & Perry, R. A. Crown ether catalysis of decarboxylation: a general survey of reactivity and detailed analysis of the triphenylacetate anion. Can. J. Chem. 56, 104–113 (1978).

    Article  CAS  Google Scholar 

  40. Kottisch, V., Gentekos, D. T. & Fors, B. P. “Shaping” the future of molecular weight distributions in anionic polymerization. ACS Macro Lett. 5, 796–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, X., Jiang, C., Ren, C. & Li, Z. Controlled ring-opening polymerization of epoxides catalyzed by metal-free phosphazenium salts (P5+): using carboxylic acid as an initiator to prepare esterified polyethers. ACS Appl. Polym. Mater. 6, 896–904 (2023).

    Article  Google Scholar 

  42. Sivakumar, K. et al. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6, 4603–4606 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Binder, W. H. & Sachsenhofer, R. ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007).

    Article  CAS  Google Scholar 

  44. Kaur, J., Saxena, M. & Rishi, N. An overview of recent advances in biomedical applications of click chemistry. Bioconjugate Chem. 32, 1455–1471 (2021).

    Article  CAS  Google Scholar 

  45. Anderson, C. D., Shea, K. J. & Rychnovsky, S. D. Strategies for the generation of molecularly imprinted polymeric nitroxide catalysts. Org. Lett. 7, 4879–4882 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Bugnon, L., Morton, C. J. H., Novak, P., Vetter, J. & Nesvadba, P. Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem. Mater. 19, 2910–2914 (2007).

    Article  CAS  Google Scholar 

  47. Amorati, R., Pedulli, G. F., Pratt, D. A. & Valgimigli, L. TEMPO reacts with oxygen-centered radicals under acidic conditions. Chem. Commun. 46, 5139–5141 (2010).

    Article  CAS  Google Scholar 

  48. Downie, I. M., Earle, M. J., Heaney, H. & Shuhaibar, K. F. Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride. Tetrahedron 49, 4015–4034 (1993).

    Article  CAS  Google Scholar 

  49. Armesto, D. et al. Novel photoreactions of 2-aza-1,4-dienes in the triplet excited state and via radical-cation intermediates. 2-aza-di-π-methane rearrangements yielding cyclopropylimines and N-vinylaziridines. J. Org. Chem. 68, 6661–6671 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Xing, W.-L., Wang, J.-X., Fu, M.-C. & Fu, Y. Efficient decarboxylative/defluorinative alkylation for the synthesis of gem-difluoroalkenes through an SN2’-type route. Chin. J. Chem. 40, 323–328 (2022).

    Article  CAS  Google Scholar 

  51. Devasthale, P. et al. Cyclobutane- and azetidine-containing mono and spirocyclic compounds as alpha V integrin inhibitors. International patent WO2018089355A1 (2018).

  52. Cho, D. et al. Temperature gradient interaction chromatography and MALDI-TOF mass spectrometry analysis of stereoregular poly(ethyl methacrylate)s. Anal. Chem. 74, 1928–1931 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Jacky, P., Easley, A. & Fors, B. Data from: Controlled anionic polymerization mediated by carbon dioxide. Cornell University eCommons Repository https://doi.org/10.7298/s733-8m37 (2025).

Download references

Acknowledgements

We thank G. Coates for use of the GPC system with an ultraviolet detector and J. Koehl for sample preparation and analysis. We thank E. Stache for use of the GPC system with N,N-dimethylacetamide as the eluent and C. Preston for sample preparation and analysis. This work was supported by the National Science Foundation (grant number CHE 2203758 to B.P.F., P.E.J. and A.D.E.), National Science Foundation Graduate Research Fellowship Program (grant number DGE 2139899 to P.E.J.) and Cornell College of Arts and Sciences Klarman Postdoctoral Fellowship (to A.D.E.). This work made use of the Cornell University NMR Facility, which is supported in part by the National Science Foundation through MRI award CHE-1531632. This work made use of the Cornell Center for Materials Research, supported by the Materials Research Science and Engineering Centers programme DMR-1120296. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.E.J., A.D.E. and B.P.F. designed the experiments and prepared the paper. P.E.J. and A.D.E. conducted and analysed the experiments.

Corresponding author

Correspondence to Brett P. Fors.

Ethics declarations

Competing interests

On 3 March 2025, B.P.F. and P.E.J. filed a patent application (US Patent application number 63/765,983; ‘Vinyl polymers, methods of making same, and uses thereof’) on technology related to the processes described in this article. The other author declares no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jeffrey Foster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–78, Tables 1–10 and References.

Source data

Source Data Fig. 3

Numerical data for the plots in Fig. 3b–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacky, P.E., Easley, A.D. & Fors, B.P. Controlled anionic polymerization mediated by carbon dioxide. Nat. Chem. 17, 1076–1082 (2025). https://doi.org/10.1038/s41557-025-01819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01819-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing