Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance recyclable polymers enabled by stereo- and sequence-controlled polymerization

Abstract

Monomer design strategy has become a powerful tool to access chemically recyclable polymers with desired and diverse properties. The presence of two or multiple stereogenic centres in one monomer offers a new dimension to fine-tune the polymer performance. However, it is still a formidable challenge in synthetic polymer chemistry to achieve precise stereocontrol and sequence control over the polymer microstructure. Here we report a stereo- and sequence-controlled polymerization of 5H-1,4-benzodioxepin-3(2H)-one-based monomers with two stereogenic centres (M) to furnish a series of isoenriched AB diblock polymers P(cis-M)-b-P(trans-M) and ABA triblock polymers P(trans-M)-b-P(cis-M)-b-P(trans-M). Notably, P(cis-M2)900-b-P(trans-M2)38 delivered impressive toughness and ductility, comparable to the commodity plastic isotactic polypropylene; the ABA triblock P(trans-M2)26-b-P(cis-M2)900-b-P(trans-M2)26 appeared to be softer and resembled low-density polyethylene. These various materials could fully convert to the monomer M. The establishment of stereo- and sequence-controlled polymerization not only provides an effective and robust strategy to tailor polymer properties on the molecular level, but also delivers various chemically recyclable materials that can be converted back to monomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accessing chemically recyclable polymers with tunable properties via stereo- and sequence-controlled polymerization.
Fig. 2: Stereocontrolled ROP of cis-M1 and trans-M1.
Fig. 3: Stereocomplexation of P(cis-M1) and P(trans-M1).
Fig. 4: Stereo- and sequence-controlled polymerization.
Fig. 5: Application of stereo- and sequence-controlled polymerization.
Fig. 6: The chemical recycling study.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are provided in the main Article and the Supplementary Information and are also available from the authors upon reasonable request. Crystallographic data for the structure of (R,R)-M1 reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 2367052. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).

    Article  Google Scholar 

  2. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hong, M. & Chen, E. Y.-X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    Article  CAS  Google Scholar 

  5. Xu, G. & Wang, Q. Chemically recyclable polymer materials: polymerization and depolymerization cycles. Green Chem. 24, 2321–2346 (2022).

    Article  CAS  Google Scholar 

  6. Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

    Article  CAS  Google Scholar 

  7. Haque, F. M. et al. Defining the macromolecules of tomorrow through synergistic sustainable polymer research. Chem. Rev. 122, 6322–6373 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  9. Shi, C., Quinn, E. C., Diment, W. T. & Chen, E. Y.-X. Recyclable and (bio)degradable polyesters in a circular plastics economy. Chem. Rev. 124, 4393–4478 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem 7, 2896–2912 (2021).

    Article  CAS  Google Scholar 

  11. Li, X.-L., Ma, K., Xu, F. & Xu, T.-Q. Advances in the synthesis of chemically recyclable polymers. Chem. Asian J. 18, e202201167 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, L., Reilly, L. T., Shi, C., Quinn, E. C. & Chen, E. Y.-X. Proton-triggered topological transformation in superbase-mediated selective polymerization enables access to ultrahigh-molar-mass cyclic polymers. Nat. Chem. 16, 1357–1365 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Hughes, R. W. et al. Bulk depolymerization of methacrylate polymers via pendent group activation. J. Am. Chem. Soc. 146, 6217–6224 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Chin, M. T. et al. Implementing a doping approach for poly(methyl methacrylate) recycling in a circular economy. J. Am. Chem. Soc. 146, 5786–5792 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y., Zhu, Y., Lv, W., Wang, X. & Tao, Y. Tough while recyclable plastics enabled by monothiodilactone monomers. J. Am. Chem. Soc. 145, 1877–1885 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, L. et al. Chemically circular, mechanically tough, and melt-processable polyhydroxyalkanoates. Science 380, 64–69 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Rapagnani, R. M., Dunscomb, R. J., Fresh, A. A. & Tonks, I. A. Tunable and recyclable polyesters from CO2 and butadiene. Nat. Chem. 14, 877–883 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Li, Z., Shen, Y. & Li, Z. Ring-opening polymerization of lactones to prepare closed-loop recyclable polyesters. Macromolecules 57, 1919–1940 (2024).

    Article  CAS  Google Scholar 

  20. Kariyawasam, L. S., Rolsma, J. & Yang, Y. Chemically recyclable dithioacetal polymers via reversible entropy-driven ring-opening polymerization. Angew. Chem. Int. Ed. 62, e202303039 (2023).

    Article  CAS  Google Scholar 

  21. Meng, X.-B. et al. Thermally stable and chemically recyclable poly(ketal-ester)s regulated by floor temperature. J. Am. Chem. Soc. 146, 15428–15437 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, Z. et al. Catalytically controlled ring-opening polymerization of 2-oxo-15-crown-5 for degradable and recyclable PEG-like polyesters. ACS Macro Lett. 11, 792–798 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Tu, Y.-M., Gong, F.-L., Wu, Y.-C., Cai, Z. & Zhu, J.-B. Insights into substitution strategy towards thermodynamic and property regulation of chemically recyclable polymers. Nat. Commun. 14, 3198 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, X.-L., Clarke, R. W., Jiang, J.-Y., Xu, T.-Q. & Chen, E. Y.-X. A circular polyester platform based on simple gem-disubstituted valerolactones. Nat. Chem. 15, 278–285 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Xiong, W. & Lu, H. Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Sci. China Chem. 66, 725–738 (2023).

    CAS  Google Scholar 

  26. Sathe, D., Yoon, S., Wang, Z., Chen, H. & Wang, J. Deconstruction of polymers through olefin metathesis. Chem. Rev. 124, 7007–7044 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Shi, C., Diment, W. & Chen, E. Y.-X. Closed-loop recycling of mixed plastics of polyester and CO2-based polycarbonate to a single monomer. Angew. Chem. Int. Ed. 63, e202405083 (2024).

    Article  CAS  Google Scholar 

  28. Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 39, 165–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Feng, L., Bian, X., Li, G. & Chen, X. Thermal properties and structural evolution of poly(l-lactide)/poly(d-lactide) blends. Macromolecules 54, 10163–10176 (2021).

    Article  CAS  Google Scholar 

  30. Li, H., Ollivier, J., Guillaume, S. M. & Carpentier, J.-F. Tacticity control of cyclic poly(3-thiobutyrate) prepared by ring-opening polymerization of racemic β-thiobutyrolactone. Angew. Chem. Int. Ed. 61, e202202386 (2022).

    Article  CAS  Google Scholar 

  31. Tang, X. & Chen, E. Y.-X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. He, C. et al. Monomer-promoting asymmetric kinetic resolution-alternating copolymerization to afford AAB-type copolyesters. J. Am. Chem. Soc. 145, 9786–9799 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Li, K. et al. Kinetic resolution polymerization enabled chemical synthesis of perfectly isotactic polythioesters. Angew. Chem. Int. Ed. 63, e202405382 (2024).

    Article  CAS  Google Scholar 

  34. Guo, X., Xu, G., Yang, R. & Wang, Q. Specific discrimination polymerization for highly isotactic polyesters synthesis. J. Am. Chem. Soc. 146, 9084–9095 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  PubMed  Google Scholar 

  36. Rosen, T., Goldberg, I., Navarra, W., Venditto, V. & Kol, M. Block–stereoblock copolymers of poly(ϵ-caprolactone) and poly(lactic acid). Angew. Chem. Int. Ed. 57, 7191–7195 (2018).

    Article  CAS  Google Scholar 

  37. Wang, X., Chin, A. L., Zhou, J., Wang, H. & Tong, R. Resilient poly(α-hydroxy acids) with improved strength and ductility via scalable stereosequence-controlled polymerization. J. Am. Chem. Soc. 143, 16813–16823 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, Y. & Lu, X.-B. Current challenges and perspectives in CO2-based polymers. Macromolecules 56, 1759–1777 (2023).

    Article  CAS  Google Scholar 

  39. Tschan, M. J.-L., Gauvin, R. M. & Thomas, C. M. Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters. Chem. Soc. Rev. 50, 13587–13608 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, X., Hua, X. & Cui, D. Copolymerization of lactide and cyclic carbonate via highly stereoselective catalysts to modulate copolymer sequences. Macromolecules 51, 930–937 (2018).

    Article  CAS  Google Scholar 

  41. Li, H., Shakaroun, R. M., Guillaume, S. M. & Carpentier, J. F. Recent advances in metal-mediated stereoselective ring-opening polymerization of functional cyclic esters towards well-defined poly(hydroxy acid)s: from stereoselectivity to sequence-control. Chem. Eur. J. 26, 128–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Liao, X., Su, Y. & Tang, X. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci. China Chem. 65, 2096–2121 (2022).

    Article  CAS  Google Scholar 

  43. Huang, H.-Y. et al. Spiro-salen catalysts enable the chemical synthesis of stereoregular polyhydroxyalkanoates. Nat. Catal. 6, 720–728 (2023).

    Article  CAS  Google Scholar 

  44. Deacy, A. C., Gregory, G. L., Sulley, G. S., Chen, T. T. D. & Williams, C. K. Sequence control from mixtures: switchable polymerization catalysis and future materials applications. J. Am. Chem. Soc. 143, 10021–10040 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chellali, J. E. et al. Access to stereoblock polyesters via irreversible chain-transfer ring-opening polymerization (ICT-ROP). J. Am. Chem. Soc. 146, 11562–11569 (2024).

    CAS  Google Scholar 

  46. Jia, Z., Li, Y. & Wu, J. Sequence-controlled alternating copolyesters synthesis via selective ring-opening polymerization. Macromol. Chem. Phys. 222, 2100323 (2021).

    Article  CAS  Google Scholar 

  47. Tang, X., Westlie, A. H., Watson, E. M. & Chen, E. Y.-X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science 366, 754–758 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, Z., LaPointe, A. M., Shaffer, T. D. & Coates, G. W. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat. Chem. 15, 856–861 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Tu, Y.-M. et al. Biobased high-performance aromatic–aliphatic polyesters with complete recyclability. J. Am. Chem. Soc. 143, 20591–20597 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Tang, Z. et al. Stereoselective polymerization of rac-lactide using a monoethylaluminum Schiff base complex. Biomacromolecules 5, 965–970 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, X. et al. Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide. Nat. Commun. 14, 3647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McGuire, T. M. et al. Control of crystallinity and stereocomplexation of synthetic carbohydrate polymers from d- and l-xylose. Angew. Chem. Int. Ed. 60, 4524–4528 (2021).

    Article  CAS  Google Scholar 

  53. Wan, Z.-Q. et al. Comprehensive understanding of polyester stereocomplexation. J. Am. Chem. Soc. 141, 14780–14787 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, J.-B., Watson, E. M., Tang, J. & Chen, E. Y.-X. A synthetic polymer system with repeatable chemical recyclability. Science 360, 398–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Tsuji, H. Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Deliv. Rev. 107, 97–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Xia, Y., Yuan, P., Zhang, Y., Sun, Y. & Hong, M. Converting non-strained γ-valerolactone and derivatives into sustainable polythioesters via isomerization-driven cationic ring-opening polymerization of thionolactone intermediate. Angew. Chem. Int. Ed. 62, e202217812 (2023).

    Article  CAS  Google Scholar 

  57. Fan, H.-Z. et al. Advancing the development of recyclable aromatic polyesters by functionalization and stereocomplexation. Angew. Chem. Int. Ed. 61, e202117639 (2022).

    Article  CAS  Google Scholar 

  58. Worch, J. C. et al. Stereochemical enhancement of polymer properties. Nat. Rev. Chem. 3, 514–535 (2019).

    Article  CAS  Google Scholar 

  59. Cheng, M., Attygalle, A. B., Lobkovsky, E. B. & Coates, G. W. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J. Am. Chem. Soc. 121, 11583–11584 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1501700), the National Natural Science Foundation of China (22071163, 22301197 and 22371194), and the Fundamental Research Funds from Sichuan University (2023SCUNL103) and the State Key Laboratory of Polymer Materials Engineering (sklpme2020-3-15). We thank P.-C. Deng, D. Deng and J. Li for compound testing.

Author information

Authors and Affiliations

Authors

Contributions

J.-B.Z. conceived the project. Z.C. and J.-B.Z. directed the research. M.-Y.W. designed and conducted experiments related to polymer synthesis, polymer characterizations and catalyst synthesis. Y.-M.T. and Q.-Q.Z. conducted experiments related to polymer synthesis and characterizations. K.L. and W.X. conducted catalyst synthesis. M.-Y.W., Z.C. and J.-B.Z. wrote the initial paper and all authors contributed to the data analysis and discussions and the revised paper.

Corresponding authors

Correspondence to Zhongzheng Cai or Jian-Bo Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Claudio De Rosa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–186, discussion and Tables 1–31.

Supplementary Data 1

Crystallographic data for (R,R)-M1 (CCDC 2367052).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MY., Tu, YM., Zeng, QQ. et al. High-performance recyclable polymers enabled by stereo- and sequence-controlled polymerization. Nat. Chem. 17, 1119–1128 (2025). https://doi.org/10.1038/s41557-025-01828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01828-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing