Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of acylsulfenic acid-featuring natural product sulfenicin and characterization of its biosynthesis

Abstract

Life’s organic molecules are built with diverse functional groups that enable various importance biological functions. As such, the discovery of unique functional groups in nature can expand our understanding of the natural world. Here we report the genome-aided discovery of sulfenicin, a polyketide–non-ribosomal peptide hybrid natural product from a marine Streptomyces bacterium bearing a unique acylsulfenic acid functionality. Through a series of heterologous biosynthesis, functional genetics and enzymatic reconstitution experiments, we show that this previously described synthetic functional group is biologically assembled by a set of enzymes from both primary and secondary metabolism, including a flavin-dependent S-hydroxylase that hydroxylates the sulfur atom of a thiocarboxylic acid. Although public databases so far include no parallel for the sulfenicin biosynthetic gene cluster, enzymes catalysing the production of acylsulfenic acid are widely distributed in bacterial genomes, implying that this labile functional group may similarly have a broad distribution among specialized metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An acylsulfenic acid functional group in NPs.
Fig. 2: Heterologous expression of the taa BGC and structural characterization of a thiazole acylsulfenic acid.
Fig. 3: In vivo deletion of genes in M1152_taa to probe biosynthetic function.
Fig. 4: In vitro reconstitution of acylsulfenic acid-synthesizing enzymes.
Fig. 5: Analysis and characterization of TaaH.
Fig. 6: Phylogenetic and sequence similarity networking analysis of TaaH.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinate for 1-Cu(II) reported in this study has been deposited at the Cambridge Crystallographic Data Centre (CCDC), under the CCDC number 2387232. These data can be obtained free of charge from the CCDC at www.ccdc.cam.ac.uk/data_request/cif. The genome sequence data of Streptomyces sp. CNT360 is available on JGI at https://genome.jgi.doe.gov (project ID 1016045). Experimental data supporting the conclusions of this study are available within the article and its Supplementary Information. Source data containing accession numbers and information of proteins used for SSN analysis are provided. Source data are provided with this paper.

References

  1. Schneider, Y. K. Bacterial natural product drug discovery for new antibiotics: strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics 10, 842–856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adnani, N., Rajski, S. R. & Bugni, T. S. Symbiosis-inspired approaches to antibiotic discovery. Nat. Prod. Rep. 34, 784–814 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sekurova, O. N., Schneider, O. & Zotchev, S. B. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb. Biotechnol. 12, 828–844 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bauman, K. D., Butler, K. S., Moore, B. S. & Chekan, J. R. Genome mining methods to discover bioactive natural products. Nat. Prod. Rep. 38, 2100–2129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yee, D. A. et al. Genome mining for unknown–unknown natural products. Nat. Chem. Biol. 19, 633–640 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Feng, M., Tang, B., Liang, S. H. & Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 16, 1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Francioso, A., Baseggio Conrado, A., Mosca, L. & Fontana, M. Chemistry and biochemistry of sulfur natural compounds: key intermediates of metabolism and redox biology. Oxid. Med. Cell. Longev. 2020, 8294158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang, C.-S., Müller, W. E. G., Schröder, H. C. & Guo, Y.-W. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem. Rev. 112, 2179–2207 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y.-P. et al. Triterpene and sterol derivatives from the roots of Breynia fruticosa. J. Nat. Prod. 74, 1161–1168 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Shi, Y.-M. et al. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat. Chem. 14, 701–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hou, L. et al. Identification and biosynthesis of pro-inflammatory sulfonolipids from an opportunistic pathogen Chryseobacterium gleum. ACS Chem. Biol. 17, 1197–1206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seebeck, F. P. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J. Am. Chem. Soc. 132, 6632–6633 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Hu, W. et al. Bioinformatic and biochemical characterizations of C–S bond formation and cleavage enzymes in the fungus Neurospora crassa ergothioneine biosynthetic pathway. Org. Lett. 16, 5382–5385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burn, R., Misson, L., Meury, M. & Seebeck, F. P. Anaerobic origin of ergothioneine. Angew. Chem. Int. Ed. 56, 12508–12511 (2017).

    Article  CAS  Google Scholar 

  16. Cheng, R. et al. Single-step replacement of an unreactive C–H bond by a C–S bond using polysulfide as the direct sulfur source in the anaerobic ergothioneine biosynthesis. ACS Catal. 10, 8981–8994 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kenney, G. E. et al. The biosynthesis of methanobactin. Science 359, 1411–1416 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park, Y. J. et al. A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis. Proc. Natl Acad. Sci. USA 119, e2123566119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patteson, J. B. et al. Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 374, 1005–1009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ting, C. P. et al. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science 365, 280–284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, Y. & Van Der Donk, W. A. Biosynthesis of 3-thia-α-amino acids on a carrier peptide. Proc. Natl Acad. Sci. USA 119, e2205285119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meng, S. et al. Thiocysteine lyases as polyketide synthase domains installing hydropersulfide into natural products and a hydropersulfide methyltransferase. Nat. Commun. 12, 5672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, M., Lohman, J. R., Liu, T. & Shen, B. C–S bond cleavage by a polyketide synthase domain. Proc. Natl Acad. Sci. USA 112, 10359–10364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinner, E. K., Li, R., Marous, D. R. & Townsend, C. A. ThnL, a B12-dependent radical S-adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. Proc. Natl Acad. Sci. USA 119, e2206494119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng, Y. et al. Biosynthesis of albomycin δ2 provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem. Biol. 7, 1565–1575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, X. & Li, B. How nature incorporates sulfur and selenium into bioactive natural products. Curr. Opin. Chem. Biol. 76, 102377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahanta, N., Szantai-Kis, D. M., Petersson, E. J. & Mitchell, D. A. Biosynthesis and chemical applications of thioamides. ACS Chem. Biol. 14, 142–163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kloss, F., Pidot, S., Goerls, H., Friedrich, T. & Hertweck, C. Formation of a dinuclear copper(I) complex from the Clostridium‐derived antibiotic closthioamide. Angew. Chem. Int. Ed. 52, 10745–10748 (2013).

    Article  CAS  Google Scholar 

  29. Ishida, K., Litomska, A., Dunbar, K. L. & Hertweck, C. An enzymatic prodrug‐like route to thio and selenoamides. Angew. Chem. Int. Ed. 63, e202404243 (2024).

    Article  CAS  Google Scholar 

  30. Dorrestein, P. C., Zhai, H., McLafferty, F. W. & Begley, T. P. The biosynthesis of the thiazole phosphate moiety of thiamin: the sulfur transfer mediated by the sulfur carrier protein ThiS. Chem. Biol. 11, 1373–1381 (2004).

    CAS  PubMed  Google Scholar 

  31. Leimkühler, S., Wuebbens, M. M. & Rajagopalan, K. V. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276, 34695–34701 (2001).

    Article  PubMed  Google Scholar 

  32. Sasaki, E. et al. Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature 510, 427–431 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong, L.-B. et al. Biosynthesis of thiocarboxylic acid-containing natural products. Nat. Commun. 9, 2362 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng, C.-J. et al. PtmC catalyzes the final step of thioplatensimycin, thioplatencin, and thioplatensilin biosynthesis and expands the scope of arylamine N-acetyltransferases. ACS Chem. Biol. 16, 96–105 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Matthijs, S. et al. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol. Microbiol. 52, 371–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Lewis, T. A. et al. A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4‐dechlorination agent pyridine‐2,6‐bis(thiocarboxylic acid). Environ. Microbiol. 2, 407–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hildebrand, U., Taraz, K. & Budzikiewicz, H. [(Methoxythio)carbonyl]pyridine derivatives a new class of sulfur compounds. Tetrahedron Lett. 26, 4349–4350 (1985).

    Article  CAS  Google Scholar 

  38. Yamanaka, K. et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl Acad. Sci. USA 111, 1957–1962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, J. J., Yamanaka, K., Tang, X. & Moore, B. S. Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol. 621, 87–110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chaturvedi, K. S., Hung, C. S., Crowley, J. R., Stapleton, A. E. & Henderson, J. P. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 8, 731–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao, X., Xue, J., Jiang, J. & Zeng, X. Spectroscopic characterization and photochemistry of the atmospherically relevant methanesulfenic acid. J. Phys. Chem. Lett. 15, 7327–7334 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Hübner, J., Taraz, K. & Budzikiewicz, H. Acylsulfenic acids. Phosphorus Sulfur Silicon Relat. Elem. 47, 367–374 (1990).

    Article  Google Scholar 

  43. Beckers, H. et al. Low-pressure pyrolysis of tBu2SO: synthesis and IR spectroscopic detection of HSOH. Chemistry 12, 832–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Boyd, S. E., Livermore, D. M., Hooper, D. C. & Hope, W. W. Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob. Agents Chemother. 64, e00397–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chan, A. N. et al. Role for dithiolopyrrolones in disrupting bacterial metal homeostasis. Proc. Natl Acad. Sci. USA 114, 2717–2722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J. & Blaskovich, M. A. T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 7, 202–224 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, B., Forseth, R. R., Bowers, A. A., Schroeder, F. C. & Walsh, C. T. A backup plan for self-protection: S-methylation of holomycin biosynthetic intermediates in Streptomyces clavuligerus. ChemBioChem 13, 2521–2526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waring, P., Sjaarda, A. & Lin, Q. H. Gliotoxin inactivates alcohol dehydrogenase by either covalent modification or free radical damage mediated by redox cycling. Biochem. Pharmacol. 49, 1195–1201 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Godert, A. M., Jin, M., McLafferty, F. W. & Begley, T. P. Biosynthesis of the thioquinolobactin siderophore: an interesting variation on sulfur transfer. J. Bacteriol. 189, 2941–2944 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fraaije, M. W., Kamerbeek, N. M., van Berkel, W. J. H. & Janssen, D. B. Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Lett. 518, 43–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Nicoll, C. R. & Mascotti, M. L. Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny. BBA Adv. 4, 100108 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eswaramoorthy, S., Bonanno, J. B., Burley, S. K. & Swaminathan, S. Mechanism of action of a flavin-containing monooxygenase. Proc. Natl Acad. Sci. USA 103, 9832–9837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malito, E., Alfieri, A., Fraaije, M. W. & Mattevi, A. Crystal structure of a Baeyer–Villiger monooxygenase. Proc. Natl Acad. Sci. USA 101, 13157–13162 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheesman, M. J., Kneller, M. B. & Rettie, A. E. Critical role of histidine residues in cyclohexanone monooxygenase expression, cofactor binding and catalysis. Chem. Biol. Interact. 146, 157–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Riebel, A., Fink, M. J., Mihovilovic, M. D. & Fraaije, M. W. Type II flavin-containing monooxygenases: a new class of biocatalysts that harbors Baeyer–Villiger monooxygenases with a relaxed coenzyme specificity. Chem. Cat. Chem. 6, 1112–1117 (2014).

    CAS  Google Scholar 

  56. Riebel, A., de Gonzalo, G. & Fraaije, M. W. Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. J. Mol. Catal. B 88, 20–25 (2013).

    Article  CAS  Google Scholar 

  57. Turnaev, I. I. et al. The phylogeny of class B flavoprotein monooxygenases and the origin of the YUCCA protein family. Plants 9, 1092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, Y. et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Teufel, R., Agarwal, V. & Moore, B. S. Unusual flavoenzyme catalysis in marine bacteria. Curr. Opin. Chem. Biol. 31, 31–39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steele, A. D., Kiefer, A. F. & Shen, B. The many facets of sulfur incorporation in natural product biosynthesis. Curr. Opin. Chem. Biol. 76, 102366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 48, 3–10 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta. Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

  63. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta. Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  64. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  65. Bursch, K. L., Olp, M. D. & Smith, B. C. Analysis of continuous enzyme kinetic data using ICEKAT. Methods Enzymol. 690, 109–129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Olp, M. D., Kalous, K. S. & Smith, B. C. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces. BMC Bioinform. 21, 186 (2020).

    Article  CAS  Google Scholar 

  67. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 54, 5.6.1–5.6.37 (2016).

    Article  Google Scholar 

  69. Shen, M. & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. & Taylor, R. D. Improved protein–ligand docking using GOLD. Proteins 52, 609–623 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Oberg, N., Zallot, R. & Gerlt, J. A. EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) web resource for genomic enzymology tools. J. Mol. Biol. 435, 168018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants 1R35GM150565 (to J.L.), R01GM085770 (to B.S.M.) and F32GM129960 (to T.d.R.), as well as a National Science Foundation grant 2239561 (to J.L.). We thank P. Jensen (University of California San Diego (UCSD)) and the Fijian government for access to strain Streptomyces sp. CNT360 under material transfer agreement 9D00CF1B-436F-4687-A75E-F483ED5B3181. We acknowledge M. Walla of the University of South Carolina (USC) Mass Spectrometry Facility for assistance in acquiring HRMS and HRMS/MS data; P. J. Pellechia and T. Johnson from USC NMR Facility, and B. M. Duggan from UCSD NMR Facility for help with acquiring NMR data; M. D. Smith from USC X-Ray Diffraction Facility for acquiring X-ray crystallography data; T. Sawa from Kumamoto University for providing 34S-labelled l-cysteine; as well as J. Riffle, D. V. Peryshkov and K. D. Shimizu from USC, K.-S. Ju from The Ohio State University, Y. Kudo from Tohoku University, M. S. Cushman from Purdue University, and Q. Wu from Yale University for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.X., H.Z., B.S.M. and J.L. designed the research. D.X., H.Z., Y.Q., W.L., M.D.M., M.X., X.L., C.P., E.A.O., L.H., A.C., T.d.R., T.A. and C.Y. performed the research. All authors analysed the data and discussed results. All authors participated in preparing the paper.

Corresponding authors

Correspondence to Bradley S. Moore or Jie Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–49, Tables 1–11 and unprocessed gels.

Supplementary Data 1

Source Data for Supplementary Fig. 44.

Supplementary Data 2

Source Data for Supplementary Fig. 47b.

Supplementary Data 3

Source Data for Supplementary Fig. 48.

Supplementary Data 4

Coordinates for 1-Cu(II).

Supplementary Data 5

Crystallographic data for 1-Cu(II) (CCDC 2387232).

Source data

Source Data Fig. 2

Source data for UV and IR spectra in Fig. 2c.

Source Data Fig. 5

Statistical source data for kinetic analysis in Fig. 5a.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, D., Zou, H., Qiu, Y. et al. Discovery of acylsulfenic acid-featuring natural product sulfenicin and characterization of its biosynthesis. Nat. Chem. 17, 1011–1019 (2025). https://doi.org/10.1038/s41557-025-01833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01833-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing