Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Building ultramicroporous zirconium metal‒organic frameworks with ligands of high coordination density through a reticular approach

Abstract

The rational design and synthesis of ultramicroporous solids featuring uniform pore dimensions remains a notable challenge, yet these materials are critical for the selective discrimination of molecules with similar physicochemical properties. Here we report a family of ten ultramicroporous zirconium-based metal–organic frameworks assembled from isophthalate-based octatopic or hexatopic carboxylate linkers with high coordination density and Zr6 nodes with relatively low connectivity (4, 6 and 8). The diverse inorganic node geometry, ligand connectivity, structural topology, framework stability and ultramicroporosity of the resultant metal–organic frameworks underscore the pivotal role of linker geometry and functionality in tailoring the adsorptive properties of the material. These ultramicroporous solids hold promise for the separation of industrially relevant hydrocarbons. We show that HIAM-802 and HIAM-601 exhibit high-efficiency separation of hexane isomers based on branching by molecular exclusion. We validated their separation capabilities through breakthrough experiments and further clarified the underlying adsorption mechanisms by density functional theory calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of pore size of representative Zr6-MOFs.
Fig. 2: Crystallographic structure of HIAM-801 through HIAM-806 built on octacarboxylates.
Fig. 3: Crystallographic structure of HIAM-601 through HIAM-604 built on hexacarboxylates.
Fig. 4: Adsorption and separation of hexane isomers on HIAM-802 and HIAM-601.
Fig. 5: Adsorption mechanisms on HIAM-802 and HIAM-601.

Similar content being viewed by others

Data availability

All data involved in this work are included in this article and the corresponding supplementary materials. The crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2351913 (HIAM-801), 2351914 (HIAM-802), 2351915 (HIAM-803), 2351916 (HIAM-804), 2351917 (HIAM-805), 2351918 (HIAM-806), 2351919 (HIAM-601), 2351920 (HIAM-602), 2351921 (HIAM-603) and 2351922 (HIAM-604). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Bennett, T. D., Coudert, F.-X., James, S. L. & Cooper, A. I. The changing state of porous materials. Nat. Mater. 20, 1179–1187 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Li, Y. & Yu, J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 6, 1156–1174 (2021).

    Article  CAS  Google Scholar 

  3. Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Shao, W. et al. Engineering ultramicroporous carbon with abundant C═O as extended ‘slope-dominated’ sodium ion battery anodes. ACS Sustainable Chem. Eng. 9, 9727–9739 (2021).

    Article  CAS  Google Scholar 

  5. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  6. Du, S. et al. Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation. Nat. Commun. 14, 1197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, T. & Liu, G. Porous organic materials offer vast future opportunities. Nat. Commun. 11, 4984 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, C. et al. Hybrid organic–inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nat. Chem. 15, 1722–1729 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).

    Article  CAS  Google Scholar 

  11. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  12. Li, L. et al. Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, H. et al. Water harvesting from air with metal–organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Mondloch, J. E. et al. Destruction of chemical warfare agents using metal–organic frameworks. Nat. Mater. 14, 512–516 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, R.-B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Zhai, Q.-G., Bu, X., Zhao, X., Li, D.-S. & Feng, P. Pore space partition in metal–organic frameworks. Acc. Chem. Res. 50, 407–417 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, H. et al. Optimization of pore-space-partitioned metal–organic frameworks using the bioisosteric concept. J. Am. Chem. Soc. 144, 20221–20226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, D.-D. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 18, 994–998 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, Y. et al. Temperature-programmed separation of hexane isomers by a porous calcium chloranilate metal–organic framework. Angew. Chem. Int. Ed. 61, e202214060 (2022).

    Article  CAS  Google Scholar 

  21. Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. O’Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    Article  PubMed  Google Scholar 

  23. Saraci, F., Quezada-Novoa, V., Donnarumma, P. R. & Howarth, A. J. Rare-earth metal–organic frameworks: from structure to applications. Chem. Soc. Rev. 49, 7949–7977 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673–680 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, L., Yang, Z., Sha, F. & Chen, Z. Design, synthesis and applications of functional zirconium-based metal–organic frameworks. Sci. China Chem. 66, 3383–3397 (2023).

    Article  CAS  Google Scholar 

  26. Bai, Y. et al. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  PubMed  Google Scholar 

  28. Hu, Z. & Zhao, D. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Trans. 44, 19018–19040 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Bon, V., Senkovska, I., Baburin, I. A. & Kaskel, S. Zr- and Hf-based metal–organic frameworks: tracking down the polymorphism. Cryst. Growth Des. 13, 1231–1237 (2013).

    Article  CAS  Google Scholar 

  31. Wang, H. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 9, 1745 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gong, W. et al. Modulator-dependent dynamics synergistically enabled record SO2 uptake in Zr(IV) metal–organic frameworks based on pyrene-cored molecular quadripod ligand. J. Am. Chem. Soc. 145, 26890–26899 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, W. et al. Reticular synthesis of metal–organic frameworks by 8-connected quadrangular prism ligands for water harvesting. Angew. Chem. Int. Ed. 62, e202305144 (2023).

    Article  CAS  Google Scholar 

  34. Alezi, D. et al. Reticular chemistry at its best: directed assembly of hexagonal building units into the awaited metal–organic framework with the intricate polybenzene topology, pbz-MOF. J. Am. Chem. Soc. 138, 12767–12770 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, S. et al. Engineering structural dynamics of zirconium metal–organic frameworks based on natural C4 linkers. J. Am. Chem. Soc. 141, 17207–17216 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Leubner, S. et al. Synthesis and exfoliation of a new layered mesoporous Zr-MOF comprising hexa- and dodecanuclear clusters as well as a small organic linker molecule. J. Am. Chem. Soc. 142, 15995–16000 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Y. et al. A flexible metal–organic framework with 4-connected Zr6 nodes. J. Am. Chem. Soc. 140, 11179–11183 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y. et al. Uncovering structural opportunities for zirconium metal–organic frameworks via linker desymmetrization. Adv. Sci. 6, 1901855 (2019).

    Article  CAS  Google Scholar 

  39. Lyu, H. et al. Carbon dioxide capture chemistry of amino acid functionalized metal–organic frameworks in humid flue gas. J. Am. Chem. Soc. 144, 2387–2396 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Feng, D. et al. A highly stable zeotype mesoporous zirconium metal–organic framework with ultralarge pores. Angew. Chem. Int. Ed. 54, 149–154 (2015).

    Article  CAS  Google Scholar 

  41. Herm, Z. R. et al. Separation of hexane isomers in a metal–organic framework with triangular channels. Science 340, 960–964 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Xie, F., Yu, L., Wang, H. & Li, J. Metal–organic frameworks for C6 alkane separation. Angew. Chem. Int. Ed. 62, e202300722 (2023).

    Article  CAS  Google Scholar 

  43. Zhang, Z., Peh, S. B., Kang, C., Yu, K. & Zhao, D. Efficient splitting of alkane isomers by a bismuth-based metal–organic framework with auxetic reentrant pore structures. Angew. Chem. Int. Ed. 61, e202211808 (2022).

    Article  CAS  Google Scholar 

  44. Yu, L. et al. Splitting mono- and dibranched alkane isomers by a robust aluminum-based metal–organic framework material with optimal pore dimensions. J. Am. Chem. Soc. 142, 6925–6929 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  49. Jiang, Z.-J. et al. Dehydration-induced cluster consolidation in a metal–organic framework for sieving hexane isomers. Angew. Chem. Int. Ed. 63, e202403209 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant nos. 22478251 to H.W., 22071234 to S.W. and 22178119 to Q.X.), Shenzhen Science and Technology Program (grant no. KCXFZ20211020163818026 to H.W.), the CAS Talent Introduction Program (grant no. KJ9990007009 to S.W.) and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (grant no. DE-SC0019902 to J.L.). Moreover, we thank S. Ullah for helpful discussions.

Author information

Authors and Affiliations

Contributions

S.W., J.L. and H. W. conceived the idea and supervised the project. L.Y., S.L. and X.Z. synthesized the samples and conducted the characterization. L.Y. performed the adsorption measurements and calculations. B.Z. and Q.X. participated with the data analysis. K.Z. performed the crystal structure analysis. L.Y. and H.W. wrote the first draft. S.W. and J.L. revised the paper and all authors participated in the discussion of the results and made comments on the paper.

Corresponding authors

Correspondence to Sujing Wang, Jing Li or Hao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Zongbi Bao, Aziz Ghoufi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–100, Tables 1–15, Notes 1–3 and references.

Supplementary Data 1

Cartesian coordinates for the optimized structures.

Supplementary Data 2

Crystallographic data for HIAM-801 (CCDC 2351913).

Supplementary Data 3

Crystallographic data for HIAM-802 (CCDC 2351914).

Supplementary Data 4

Crystallographic data for HIAM-803 (CCDC 2351915).

Supplementary Data 5

Crystallographic data for HIAM-804 (CCDC 2351916).

Supplementary Data 6

Crystallographic data for HIAM-805 (CCDC 2351917).

Supplementary Data 7

Crystallographic data for HIAM-806 (CCDC 2351918).

Supplementary Data 8

Crystallographic data for HIAM-601 (CCDC 2351919).

Supplementary Data 9

Crystallographic data for HIAM-602 (CCDC 2351920).

Supplementary Data 10

Crystallographic data for HIAM-603 (CCDC 2351921).

Supplementary Data 11

Crystallographic data for HIAM-604 (CCDC 2351922).

Source data

Source Data Fig. 1

Source data of each point in Fig. 1a,b.

Source Data Fig. 4

Source data of the adsorption results in Fig. 4.

Source Data Fig. 5

Source data of the computational results in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Li, S., Zhou, X. et al. Building ultramicroporous zirconium metal‒organic frameworks with ligands of high coordination density through a reticular approach. Nat. Chem. 17, 1207–1215 (2025). https://doi.org/10.1038/s41557-025-01836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01836-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing