Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accessing sulfonamides via formal SO2 insertion into C–N bonds

Abstract

Functional group interconversions are particularly sought after by medicinal chemists as a means to enable both lead optimization and library diversification. Here we report SO2 insertion into the C–N bond of primary amines, enabling the direct synthesis of primary sulfonamides without preactivation and effectively inverting the nitrogen’s properties (acidity, hydrogen bonding and so on). The key to this transformation is the implementation of an anomeric amide as a dual-function reagent that both serves to cleave the initial C–N bond and delivers a nitrogen atom to the product after SO2 incorporation. The process tolerates a wide array of functionalities and can be run in an automated fashion, thus allowing libraries of amines to be viable progenitors to highly desirable sulfonamides. Mechanistic studies support an isodiazene radical chain mechanism that generates an intermediate sulfinate that reacts with the anomeric amide to forge the S–N bond. Our protocol was used to conduct a high-throughput library diversification campaign, was applied to the synthesis and modification of approved active pharmaceutical ingredients and was used to enable a net CO-to-SO2 isosteric replacement approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview.
Fig. 2: Automating SO2 insertion for rapid library conversion.
Fig. 3: Synthetic utility.
Fig. 4: Mechanistic investigations.
Fig. 5: Mechanism and DFT calculations.

Similar content being viewed by others

Data availability

All data are available in the Supplementary Information.

References

  1. Ertl, P., Altmann, E. & McKenna, J. M. The most common functional groups in bioactive molecules and how their popularity has evolved over time. J. Med. Chem. 63, 8408–8418 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Bhutani, P. et al. U.S. FDA approved drugs from 2015–June 2020: a perspective. J. Med. Chem. 64, 2339–2381 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Younis, Y. et al. Structure–activity-relationship studies around the 2-amino group and pyridine core of antimalarial 3,5-diarylaminopyridines lead to a novel series of pyrazine analogues with oral in vivo activity. J. Med. Chem. 56, 8860–8871 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, S. et al. A small-molecule activation mechanism that directly opens the KCNQ2 channel. Nat. Chem. Biol. 20, 847–856 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Velilla, J. A. et al. Structural basis of colibactin activation by the ClbP peptidase. Nat. Chem. Biol. 19, 151–158 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Flinspach, M. L. et al. Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nat. Struct. Mol. Biol. 11, 54–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lopez, M. et al. S-Glycosyl primary sulfonamides—a new structural class for selective inhibition of cancer-associated carbonic anhydrases. J. Med. Chem. 52, 6421–6432 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Gunaga, P. et al. Selective IKur inhibitors for the potential treatment of atrial fibrillation: optimization of the phenyl quinazoline series leading to clinical candidate 5-[5-phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide. J. Med. Chem. 60, 3795–3803 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Ovung, A. & Bhattacharyya, J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 13, 259–272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 376, 5 (2018).

    Article  Google Scholar 

  13. Mujumdar, P. & Poulsen, S.-A. Natural product primary sulfonamides and primary sulfamates. J. Nat. Prod. 78, 1470–1477 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Plunkett, S., Basch, C. H., Santana, S. O. & Watson, M. P. Harnessing alkylpyridinium salts as electrophiles in deaminative alkyl–alkyl cross-couplings. J. Am. Chem. Soc. 141, 2257–2262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiss, R., Sandor, M. & Szalai, F. A. http://Mcule.com: a public web service for drug discovery. J. Cheminformatics 4, P17 (2012).

  16. Pedersen, P. S., Blakemore, D. C., Chinigo, G. M., Knauber, T. & MacMillan, D. W. C. One-pot synthesis of sulfonamides from unactivated acids and amines via aromatic decarboxylative halosulfonylation. J. Am. Chem. Soc. 145, 21189–21196 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews, J. A. et al. Photocatalytic carboxylate to sulfinamide switching delivers a divergent synthesis of sulfonamides and sulfonimidamides. J. Am. Chem. Soc. 145, 21623–21629 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhuang, Z. et al. Visible-light-induced decarboxylative aminosulfonylation of (hetero)aryl carboxylic oxime esters. Org. Lett. 26, 713–718 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Zong, Z. et al. Conversion of carboxylic acids to sulfonamide bioisosteres via energy transfer photocatalysis. Org. Lett. 26, 8626–8631 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Carson, W. P. II, Sarver, P. J., Goudy, N. S. & MacMillan, D. W. C. Photoredox catalysis-enabled sulfination of alcohols and bromides. J. Am. Chem. Soc. 145, 20767–20774 (2023).

    Article  PubMed Central  Google Scholar 

  21. Li, Y., Xiao, F., Guo, Y. & Zeng, Y. Recent developments in deaminative functionalization of alkyl amines. Eur. J. Org. Chem. 2021, 1215–1228 (2021).

    Article  CAS  Google Scholar 

  22. Berger, K. J. & Levin, M. D. Reframing primary alkyl amines as aliphatic building blocks. Org. Biomol. Chem. 19, 11–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kong, D., Moon, P. J. & Lundgren, R. J. Radical coupling from alkyl amines. Nat. Catal. 2, 473–476 (2019).

    Article  CAS  Google Scholar 

  24. Zhao, F. et al. Photocatalytic hydrogen-evolving cross-coupling of arenes with primary amines. Org. Lett. 20, 7753–7757 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Capperucci, A. & Tanini, D. Synthesis of nitroarenes by oxidation of aryl amines. Chemistry 4, 77–97 (2022).

    Article  CAS  Google Scholar 

  26. Andrews, J. A., Pantaine, L. R. E., Palmer, C. F., Poole, D. L. & Willis, M. C. Sulfinates from amines: a radical approach to alkyl sulfonyl derivatives via donor–acceptor activation of pyridinium salts. Org. Lett. 23, 8488–8493 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Barton, D. H. R., Bringman, G., Lamotte, G., Hay Motherwell, R. S. & Motherwell, W. B. Radical deamination reactions of relevance to aminoglycoside chemistry. Tetrahedron Lett. 20, 2291–2294 (1979).

    Article  Google Scholar 

  28. Wang, M., Fan, Q. & Jiang, X. Metal-free construction of primary sulfonamides through three diverse salts. Green Chem. 20, 5469–5473 (2018).

    Article  CAS  Google Scholar 

  29. Ashley, M. A. & Rovis, T. Photoredox-catalyzed deaminative alkylation via C–N bond activation of primary amines. J. Am. Chem. Soc. 142, 18310–18316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pincekova, L., Merot, A., Schäfer, G. & Willis, M. C. Sandmeyer chlorosulfonylation of (hetero)aromatic amines using DABSO as an SO2 surrogate. Org. Lett. 26, 5951–5955 (2020).

    Article  Google Scholar 

  31. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Masson-Makdissi, J. et al. Evidence for dearomatizing spirocyclization and dynamic effects in the quasi-stereospecific nitrogen deletion of tetrahydroisoquinolines. J. Am. Chem. Soc. 146, 17719–17727 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Berger, K. J. et al. Direct deamination of primary amines via isodiazene intermediates. J. Am. Chem. Soc. 143, 17366–17373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dherange, B. D. et al. Direct deaminative functionalization. J. Am. Chem. Soc. 145, 17–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Xue, J.-H., Li, Y., Liu, Y., Li, Q. & Wang, H. Site-specific deaminative trifluoromethylation of aliphatic primary amines. Angew. Chem. Int. Ed. 63, e202319030 (2024).

    Article  CAS  Google Scholar 

  36. Good, A. & Thynne, J. C. J. Reaction of free radicals with sulphur dioxide. Part 2.—Ethyl radicals. Trans. Faraday Soc. 63, 2720–2727 (1967).

    Article  CAS  Google Scholar 

  37. Sarver, P. J., Bissonnette, N. B. & MacMillan, D. W. C. Decatungstate-catalyzed C(sp3)–H sulfinylation: rapid access to diverse organosulfur functionality. J. Am. Chem. Soc. 143, 9737–9743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Graham, S. L. & Scholz, T. H. The reaction of sulfinic acid salts with hydroxylamine-O-sulfonic acid. A useful synthesis of primary sulfonamides. Synthesis 1986, 1031–1032 (2002).

    Article  Google Scholar 

  39. Emmett, E. J. & Willis, M. C. The development and application of sulfur dioxide surrogates in synthetic organic chemistry. Asian J. Org. Chem. 4, 602–611 (2015).

    Article  CAS  Google Scholar 

  40. You, T., Zhang, M., Chen, J., Liu, H. & Xia, Y. Ruthenium(ii)-catalyzed reductive N–O bond cleavage of N-OR (R = H, alkyl, or acyl) substituted amides and sulfonamides. Org. Chem. Front. 8, 112–119 (2021).

    Article  CAS  Google Scholar 

  41. Denisenko, A. et al. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat. Chem. 15, 1155–1163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matošević, A. & Bosak, A. Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Arch. Ind. Hyg. Toxicol. 71, 285–299 (2020).

    Google Scholar 

  43. De, S. et al. Pyridine: the scaffolds with significant clinical diversity. RSC Adv. 12, 15385–15406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Digles, D. & Ecker, G. F. Self-organizing maps for in silico screening and data visualization. Mol. Inform. 30, 838–846 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  46. Walters, P. Visualizing chemical space. GitHub https://github.com/PatWalters/workshop/blob/master/predictive_models/2_visualizing_chemical_space.ipynb (2019).

  47. Gualandi, A. et al. Photocatalytic radical alkylation of electrophilic olefins by benzylic and alkylic zinc-sulfinates. ACS Catal. 7, 5357–5362 (2017).

    Article  CAS  Google Scholar 

  48. Lewis, N. L. et al. Phase I study of the safety, tolerability, and pharmacokinetics of oral CP-868,596, a highly specific platelet-derived growth factor receptor tyrosine kinase inhibitor in patients with advanced cancers. J. Clin. Oncol. 27, 5262–5269 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Galanis, A. et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 123, 94–100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith, C. C. et al. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc. Natl Acad. Sci. USA 111, 5319–5324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ecker, A. K., Levorse, D. A., Victor, D. A. & Mitcheltree, M. J. Bioisostere effects on the EPSA of common permeability-limiting groups. ACS Med. Chem. Lett. 13, 964–971 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hirayama, F. et al. Design, synthesis and biological activity of YM-60828 derivatives: potent and orally-bioavailable factor Xa inhibitors based on naphthoanilide and naphthalensulfonanilide templates. Bioorg. Med. Chem. 10, 2597–2610 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Loudon, G. M., Radhakrishna, A. S., Almond, M. R., Blodgett, J. K. & Boutin, R. H. Conversion of aliphatic amides into amines with [I,I-bis(trifluoroacetoxy)iodo]benzene. 1. Scope of the reaction. J. Org. Chem. 49, 4272–4276 (1984).

    Article  CAS  Google Scholar 

  54. Evans, D. & Ripin, D. Evans pKa table. ACS Organic Division https://organicchemistrydata.org/hansreich/resources/pka/pka_data/evans_pKa_table.pdf (2024).

  55. Neese, F., Hansen, A. & Liakos, D. G. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 131, 064103 (2009).

    Article  PubMed  Google Scholar 

  56. Riplinger, C., Pinski, P., Becker, U., Valeev, E. F. & Neese, F. Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 144, 024109 (2016).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.K. thanks the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number RS-2023-00237898) for a postdoctoral fellowship. The research reported in this work was supported by a National Science Foundation CAREER Award (2235826) and by Johnson and Johnson Innovative Medicine. M.K. thanks the Korea Advanced Institute of Science and Technology (KAIST) and the Institute for Basic Science (IBS) for providing computational resources. We also thank S. Wolkenberg (Johnson & Johnson) for useful discussions and feedback.

Author information

Authors and Affiliations

Authors

Contributions

M.K., C.E.O. and C.B.K. designed and conducted experiments and collected and analysed the data. M.K. conducted the computational mechanistic evaluation. C.A.R. and C.G. conducted the high-throughput parallel synthesis experiments. J.C.R. conducted the docking study. M.D.L. and M.K. conceived of the project and wrote the manuscript with input from all authors. M.D.L. and C.B.K. supervised the research.

Corresponding authors

Correspondence to Christopher B. Kelly, Christopher A. Reiher or Mark D. Levin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Nicholas Ball, Jie Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Supplementary Tables 1–8, Supplementary Discussion, and experimental procedures and spectra.

Supplementary Data

Computational data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Obertone, C.E., Kelly, C.B. et al. Accessing sulfonamides via formal SO2 insertion into C–N bonds. Nat. Chem. 17, 1247–1255 (2025). https://doi.org/10.1038/s41557-025-01848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01848-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing