Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptive dynamic kinetic resolution enables alteration of chiral induction with ring sizes

Abstract

Dynamic kinetic resolution (DKR) is an efficient chiral induction strategy that transforms both enantiomers of the substrate racemates into the same optically enriched product. Typically, the absolute configurations of the products should be determined by the chiral catalyst. Here we report an adaptive DKR strategy that forges diverse azapolycycles with high stereochemical selectivities by taking full advantage of the dynamic interconversion of diastereomeric aminoalkyl cyclopalladated complexes. Notably, this innovative adaptive DKR model achieves alterations of absolute configurations at the contiguous stereocentres with the same chiral diphosphine-ligated palladium catalyst by changing the ring sizes of the annulation products. Moreover, a concise and efficient total synthesis of martinellic acid was carried out by using the adaptive DKR process as the key chirality forging and scaffold establishment step, which further demonstrated the efficacy of this strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and motivation.
Fig. 2: Preliminary evidence for adaptive DKR.
Fig. 3: Synthetic applications.
Fig. 4: Mechanism investigations and catalytic cycles.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. The supplementary crystallographic data for this article are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) under accession numbers CCDC 2350635 (compound 4a), CCDC 2350636 (compound 3a), CCDC 2350637 (compound 5a), CCDC 2417704 (compound 5h), CCDC 2350638 (compound ent-6h), CCDC 2417682 (compound 7u), CCDC 2350639 (compound 7v) and CCDC 2350640 ([Pd(R)-MeOBIPHEP(OAc)2]).

References

  1. Schneider, G., Neidhart, W., Giller, T. & Schmid, G. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew. Chem. Int. Ed. 38, 2894–2896 (1999).

    Article  CAS  Google Scholar 

  2. Schneider, G. & Clark, D. E. Automated de novo drug design: are we nearly there yet? Angew. Chem. Int. Ed. 58, 10792–10803 (2019).

    Article  CAS  Google Scholar 

  3. Sun, H., Tawa, G. & Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today 17, 310–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Rafferty, R. J., Hicklin, R. W., Maloof, K. A. & Hergenrother, P. J. Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew. Chem. Int. Ed. 53, 220–224 (2014).

    Article  CAS  Google Scholar 

  5. Hu, Y., Stumpfe, D. & Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem. 60, 1238–1246 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Morcillo, S. P. Radical‐promoted C–C bond cleavage: a deconstructive approach for selective functionalization. Angew. Chem. Int. Ed. 58, 14044–14054 (2019).

    Article  CAS  Google Scholar 

  7. Brotschi, C. et al. Oxadiazole derivatives as dual orexin receptor antagonists: synthesis, structure–activity relationships, and sleep-promoting properties in rats. ChemMedChem 14, 1257–1270 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Boss, C. et al. The quest for the best dual orexin receptor antagonist (daridorexant) for the treatment of insomnia disorders. ChemMedChem 15, 2286–2305 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, R. D., Maccoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie, Y. & List, B. Catalytic asymmetric intramolecular [4+2] cycloaddition of in situ generated ortho-quinone methides. Angew. Chem. Int. Ed. 56, 4936–4940 (2017).

    Article  CAS  Google Scholar 

  13. Zhu, J.-X., Chen, Z.-C., Du, W. & Chen, Y.-C. Asymmetric auto-tandem palladium catalysis for 2,4-dienyl carbonates: ligand-controlled divergent synthesis. Angew. Chem. Int. Ed. 61, e202200880 (2022).

    Article  CAS  Google Scholar 

  14. Liu, C. et al. Palladium-catalyzed cascade cyclization for the synthesis of fused benzo-aza-oxa-[5-6-5] tetracycles. Angew. Chem. Int. Ed. 61, e202215020 (2022).

    Article  CAS  Google Scholar 

  15. Klose, I., Di Mauro, G., Kaldre, D. & Maulide, N. Inverse hydride shuttle catalysis enables the stereoselective one-step synthesis of complex frameworks. Nat. Chem. 14, 1306–1310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noyori, R., Tokunaga, M. & Kitamura, M. Stereoselective organic synthesis via dynamic kinetic resolution. Bull. Chem. Soc. Jpn. 68, 36–55 (1995).

    Article  CAS  Google Scholar 

  17. Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001).

    Article  CAS  Google Scholar 

  18. Steinreiber, J., Faber, K. & Griengl, H. De‐racemization of enantiomers versus de-epimerization of diastereomers-classification of dynamic kinetic asymmetric transformations (DYKAT). Chem. Eur. J. 14, 8060–8072 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Pellissier, H. Chirality from Dynamic Kinetic Resolution (The Royal Society of Chemistry, 2011); https://doi.org/10.1039/9781849732673

  20. Ruan, L.-X., Sun, B., Liu, J.-M. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. DeHovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones. Science 369, 1113–1118 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Qi, X., Liu, S. & Lan, Y. Computational studies on an aminomethylation precursor: (Xantphos)Pd(CH2NBn2)+. Organometallics 35, 1582–1585 (2016).

    Article  CAS  Google Scholar 

  23. Yu, B., Zou, S., Liu, H. & Huang, H. Palladium-catalyzed ring-closing reaction via C–N bond metathesis for rapid construction of saturated N-heterocycles. J. Am. Chem. Soc. 142, 18341–18345 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, H., Jiang, T., Zhang, J. & Huang, H. Catalytic reactions directed by a structurally well-defined aminomethyl cyclopalladated complex. Acc. Chem. Res. 54, 4305–4318 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Zou, S., Zhao, Z. & Huang, H. Palladium‐catalyzed aminoalkylative cyclization enables modular synthesis of exocyclic 1,3-dienes. Angew. Chem. Int. Ed. 62, e202311603 (2023).

    Article  CAS  Google Scholar 

  26. Cai, S., Zhao, Z., Yang, G. & Huang, H. Dynamic amine sorting enables multiselective construction of unsymmetrical chiral diamines. Nat. Chem. 16, 1972–1981 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Hamilton, J. Y., Rössler, S. L. & Carreira, E. M. Enantio- and diastereoselective spiroketalization catalyzed by chiral iridium complex. J. Am. Chem. Soc. 139, 8082–8085 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, G., Gao, B. & Huang, H. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines. Angew. Chem. Int. Ed. 54, 7657–7661 (2015).

    Article  CAS  Google Scholar 

  29. Witherup, K. M. et al. Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). J. Am. Chem. Soc. 117, 6682–6685 (1995).

    Article  CAS  Google Scholar 

  30. Haarr, M. B. & Sydnes, M. O. Synthesis of the hexahydropyrrolo-[3,2-c]-quinoline core structure and strategies for further elaboration to martinelline, martinellic acid, incargranine b, and seneciobipyrrolidine. Molecules 26, 341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, D., Xia, C., Jiang, J. & Zhang, J. First total synthesis of martinellic acid, a naturally occurring bradykinin receptor antagonist. Org. Lett. 3, 2189–2191 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda, S., Shibuya, M. & Iwabuchi, Y. Asymmetric total synthesis of martinelline and martinellic acid. Chem. Commun. 504–506 (2007).

  33. Davies, S. G. et al. Asymmetric synthesis of (−)-martinellic acid. Org. Lett. 15, 2050–2053 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Pappoppula, M. & Aponick, A. Enantioselective total synthesis of (−)-martinellic acid. Angew. Chem. Int. Ed. 54, 15827–15830 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by the National Natural Science Foundation of China (grant nos. 21925111, 92356302 and 22350008 to H.H. and 22301290 to B.Y.), the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB0450301 to H.H.), the National Key R&D Program of China (grant no. 2023YFA1507500 to H.H.) and Anhui Provincial Natural Science Foundation (grant no. 2308085QB45 to B.Y.).

Author information

Authors and Affiliations

Authors

Contributions

H.H. conceived the concept and supervised the project. B.Y. and Y.H. developed the reaction and conducted the main experimental work. H.Z., B.Y. and H.H. prepared the paper, which was approved by all authors.

Corresponding author

Correspondence to Hanmin Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Tables 1–19.

Supplementary Data 1

X-ray structure of 3a.

Supplementary Data 2

X-ray structure of 4a.

Supplementary Data 3

X-ray structure of 5a.

Supplementary Data 4

X-ray structure of 5h.

Supplementary Data 5

X-ray structure of 7u.

Supplementary Data 6

X-ray structure of 7v.

Supplementary Data 7

X-ray structure of chiral Pd catalyst.

Supplementary Data 8

X-ray structure of ent-6h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Huang, Y., Zhang, H. et al. Adaptive dynamic kinetic resolution enables alteration of chiral induction with ring sizes. Nat. Chem. 17, 1256–1264 (2025). https://doi.org/10.1038/s41557-025-01850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01850-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing