Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible formation and control of linear conjugation in polymers

Abstract

The emergence of organic semiconductors has laid the foundation for the field of plastic electronics. Controlling π-conjugation by designing proper conjugated moieties is one of the commonest strategies for achieving desired semiconducting properties in conjugated materials. Despite significant advancements in the field, the reversible formation of extended conjugation to in situ switch the nature of macromolecules between semiconductors and insulators remains elusive. Here we disclose a generic strategy for developing polymeric structures that incorporate molecular switch units. These units enable the controlled activation and deactivation of linear conjugation in response to acid–base or electronic stimuli. This is achieved by copolymerizing non-π-conjugated lactone-functionalized xanthene moieties with traditional π-conjugated building blocks. With 2,6-dihydroxynaphthalene as an ‘electro-acid’, the electrochromic-like properties of these polymers were explored, demonstrating an effective in situ conversion of the non-conjugated, colourless polymers into conjugated, coloured polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design, synthesis and reversible control of the conjugation-tunable polymer.
Fig. 2: Systematic control of linear conjugation via fine-tuning of π-orbital overlap with various common aromatic moieties.
Fig. 3: Molecular structures of polymer models H-3bmodelH-3dmodel optimized by DFT calculations.
Fig. 4: Electrical control of linear conjugation and resultant electrochromic-like behaviours.
Fig. 5: Mechanistic studies of polymer backbone reconfiguration in response to acid or electric stimuli.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the main paper, Supplementary Information and source data files. Source data are provided with this paper.

References

  1. Brédas J. L. & Silbey R. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials (Springer, 2012).

  2. Reynolds J. R., Thompson B. C. & Skotheim T. A. Conjugated Polymers: Properties, Processing, and Applications (CRC Press, 2019).

  3. Kumar V., Sharma K., Sehgal R. & Kalia S. Conjugated Polymers for Next-Generation Applications, Volume 1: Synthesis, Properties and Optoelectrochemical Devices (Woodhead, 2022).

  4. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001).

    Article  CAS  Google Scholar 

  5. Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 97, 173–206 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Beaujuge, P. M. & Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110, 268–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).

    Article  CAS  Google Scholar 

  8. Kini, G. P., Jeon, S. J. & Moon, D. K. Design principles and synergistic effects of chlorination on a conjugated backbone for efficient organic photovoltaics: a critical review. Adv. Mater. 32, 1906175 (2020).

    Article  CAS  Google Scholar 

  9. Ohayon, D. & Inal, S. Organic bioelectronics: from functional materials to next-generation devices and power sources. Adv. Mater. 32, 2001439 (2020).

    Article  CAS  Google Scholar 

  10. Guo, X. & Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 19, 922–928 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Pena-Francesch, A., Jung, H., Demirel, M. C. & Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 19, 1230–1235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. MacFarlane, L. R. et al. Functional nanoparticles through π-conjugated polymer self-assembly. Nat. Rev. Mater. 6, 7–26 (2021).

    Article  CAS  Google Scholar 

  13. Liu, D. et al. A design strategy for intrinsically stretchable high-performance polymer semiconductors: incorporating conjugated rigid fused-rings with bulky side groups. J. Am. Chem. Soc. 143, 11679–11689 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Yin, H., Zhu, Y., Youssef, K., Yu, Z. & Pei, Q. Structures and materials in stretchable electroluminescent devices. Adv. Mater. 34, 2106184 (2022).

    Article  CAS  Google Scholar 

  16. Gu, C., Jia, A.-B., Zhang, Y.-M. & Zhang, S. X.-A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 122, 14679–14721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pitsalidis, C. et al. Organic bioelectronics for in vitro systems. Chem.Rev. 122, 4700–4790 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, W. et al. Efficient and modular biofunctionalization of thiophene-based conjugated polymers through embedded latent disulfide. J. Am. Chem. Soc. 146, 578–585 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, H., Yang, L., Facchetti, A. & Marks, T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 117, 10291–10318 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Casado, J., Ponce Ortiz, R. & López Navarrete, J. T. Quinoidal oligothiophenes: new properties behind an unconventional electronic structure. Chem. Soc. Rev. 41, 5672–5686 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, Z. D., Lu, Y., Wang, J. Y. & Pei, J. Conformation control of conjugated polymers. Chem. Eur. J. 26, 16194–16205 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Bedi, A., Manor Armon, A., Diskin-Posner, Y., Bogosalvsky, B. & Gidron, O. Controlling the helicity of π-conjugated oligomers by tuning the aromatic backbone twist. Nat. Commun. 13, 451 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, J. et al. Cross conjugation in polyenes and related hydrocarbons: what can be learned from valence bond theory about single-molecule conductance? J. Am. Chem. Soc. 141, 6030–6047 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Rajca, A., Wongsriratanakul, J. & Rajca, S. Magnetic ordering in an organic polymer. Science 294, 1503–1505 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, S.-X., Ismael, A. K., Al-Jobory, A. & Lambert, C. J. Signatures of room-temperature quantum interference in molecular junctions. Acc.Chem. Res. 56, 322–331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Steinegger, A., Wolfbeis, O. S. & Borisov, S. M. Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem. Rev. 120, 12357–12489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y., Zhang, Y.-M. & Zhang, S. X.-A. Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc. Chem. Res. 54, 2216–2226 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Ponder, J. F. Jr et al. Low-defect, high molecular weight indacenodithiophene (IDT) polymers via a C–H activation: evaluation of a simpler and greener approach to organic electronic materials. ACS Mater. Lett. 3, 1503–1512 (2021).

    Article  Google Scholar 

  30. Rech, J. J. et al. Designing simple conjugated polymers for scalable and efficient organic solar cells. ChemSusChem 14, 3561–3568 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Rimmele, M., Glöcklhofer, F. & Heeney, M. Post-polymerisation approaches for the rapid modification of conjugated polymer properties. Mater. Horiz. 9, 2678–2697 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bell, K.-J. J., Kisiel, A. M., Smith, E., Tomlinson, A. L. & Collier, G. S. Simple synthesis of conjugated polymers enabled via pyrrolo[3,2-b]pyrroles. Chem. Mater. 34, 8729–8739 (2022).

    Article  CAS  Google Scholar 

  33. Österholm, A. M. et al. Conquering residual light absorption in the transmissive states of organic electrochromic materials. Mater. Horiz. 9, 252–260 (2022).

    Article  PubMed  Google Scholar 

  34. Christiansen, D. T., Tomlinson, A. L. & Reynolds, J. R. New design paradigm for color control in anodically coloring electrochromic molecules. J. Am. Chem. Soc. 141, 3859–3862 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Walczak, R. M. & Reynolds, J. R. Poly(3,4-alkylenedioxypyrroles): the PXDOPs as versatile yet underutilized electroactive and conducting polymers. Adv. Mater. 18, 1121–1131 (2006).

    Article  CAS  Google Scholar 

  36. Nhon, L. et al. Theory-driven spectral control of bis-EDOT arylene radical cation chromophores. Chem. Mater. 34, 9546–9557 (2022).

    Article  CAS  Google Scholar 

  37. Wagner, J. S., Smith, E., Bacsa, J., Tomlinson, A. L. & Reynolds, J. R. color control in bis-ethylenedioxythiophene phenylene anodically coloring electrochromes. Chem. Mater. 35, 10550–10563 (2023).

    Article  CAS  Google Scholar 

  38. Hawks, A. M. et al. Relating design and optoelectronic properties of 1,4-dihydropyrrolo[3,2-b]pyrroles bearing biphenyl substituents. J. Phys. Chem. B 127, 7352–7360 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hawks, A. M. et al. Expanding color control of anodically coloring electrochromes based on electron-rich 1,4-dihydropyrrolo[3,2-b]pyrroles. ACS Appl. Opt. Mater. 2, 1235–1244 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yen, H.-J. & Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 3, 255–264 (2012).

    Article  CAS  Google Scholar 

  41. Zhang, Q., Tsai, C.-Y., Li, L.-J. & Liaw, D.-J. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nat. Commun. 10, 1239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, Z. et al. Transparent electrochromic polymers with high optical contrast and contrast ratio. JACS Au 4, 2291–2299 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harvey, C. P. & Tovar, J. D. Main-chain photochromic conducting polymers. Polym. Chem. 2, 2699–2706 (2011).

    Article  CAS  Google Scholar 

  44. Hassab, S. et al. A new standard method to calculate electrochromic switching time. Sol. Energy Mater. Sol. Cells 185, 54–60 (2018).

    Article  CAS  Google Scholar 

  45. Wang, Y. et al. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 18, 1335–1342 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Fundamental Research Funds for the Heilongjiang Universities (2022-KYYWF-1105). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank J. Mei for valuable discussions during the revision of this paper.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., J.L. and M.W. conducted the synthetic experiments. Y.W. carried out the materials characterization and device fabrication. J.L. performed the DFT calculations. X.W. and W.C. assisted with the project. K.L. conceived the work and directed the project. K.L. and H.N. directed the electrochromic studies. K.L., Y.W. and J.L. designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Haijun Niu or Kai Lang.

Ethics declarations

Competing interests

Heilongjiang University and K.L. Y.W., J.L. and M.W. have filed a patent (2024105595290) that covers aspects of the work reported in this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Yan Xia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, discussion and Tables 1–10.

Supplementary Data

Coordinate data for Figs. 3 and 5.

Source data

Source Data Fig. 1

UV-absorption plot data.

Source Data Fig. 2

UV-absorption plot data.

Source Data Fig. 4

UV-absorption plot data.

Source Data Fig. 5

UV-absorption plot data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Liu, J., Wang, M. et al. Reversible formation and control of linear conjugation in polymers. Nat. Chem. 17, 1265–1274 (2025). https://doi.org/10.1038/s41557-025-01851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01851-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing