Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disordered interfacial H2O promotes electrochemical C–C coupling

Abstract

There is growing interest in the conversion of CO2 and CO into energy-dense multi-carbon products to help mitigate climate change, but guiding selectivity remains challenging due to competing pathways. Here we show that tuning the structure of interfacial water using highly concentrated NaClO4 electrolytes enhances CO electroreduction to C2H4. Increasing the NaClO4 concentration from 0.01 to 10 molal increased the CO reduction rate 18-fold, achieving a Faradaic efficiency of 91% for multi-carbon products at −1.43 V versus the normal hydrogen electrode. Temperature-dependent CO reduction, combined with surface-enhanced Raman spectroscopy, revealed that changes in the interfacial H2O structure correspond to variations in the apparent activation enthalpy and entropy for the reduction of CO to C2H4. At higher ionic strength, increases in activation entropy were linked to disrupted hydrogen bonding and the emergence of non-hydrogen-bonded water modes, suggesting that disordered interfacial H2O layers facilitate CO reduction to C2H4. These findings offer valuable insights into how manipulating the structure of interfacial water can enhance the reduction of CO to multi-carbon products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical CO reduction on a 25-nm-thick Cu-coated GDE.
Fig. 2: CO reduction to C2H4 with time-resolved ECMS.
Fig. 3: Contour plot of the activation enthalpy and activation entropy as a function of NaClO4 concentration and electrode potential.
Fig. 4: In situ thin-layer SHINERS measurements.

Similar content being viewed by others

Data availability

All the data that support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  2. Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    Article  CAS  Google Scholar 

  3. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  5. Kim, C. et al. Importance of site diversity and Cconnectivity in electrochemical CO reduction on Cu. ACS Catal. 14, 3128–3138 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akbashev, A. R. Electrocatalysis goes nuts. ACS Catal. 12, 4296–4301 (2022).

    Article  CAS  Google Scholar 

  7. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).

    Article  Google Scholar 

  9. Zhang, H., Gao, J., Raciti, D. & Hall, A. S. Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O. Nat. Catal. 6, 807–817 (2023).

    Article  CAS  Google Scholar 

  10. Xie, M. S. et al. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016).

    Article  CAS  Google Scholar 

  11. Lai, Y. et al. Breaking scaling relationships in CO2 reduction on copper alloys with organic additives. ACS Cent. Sci. 7, 1756–1762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soucy, T. L., Dean, W. S., Zhou, J., Rivera Cruz, K. E. & McCrory, C. C. L. Considering the influence of polymer–catalyst interactions on the chemical microenvironment of electrocatalysts for the CO2 reduction reaction. Acc. Chem. Res. 55, 252–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Watkins, N. B., Wu, Y., Nie, W., Peters, J. C. & Agapie, T. In situ deposited polyaromatic layer generates robust copper catalyst for selective electrochemical CO2 reduction at variable pH. ACS Energy Lett. 8, 189–195 (2023).

    Article  CAS  Google Scholar 

  14. Schreier, M., Kenis, P., Che, F. & Hall, A. S. Trends in electrocatalysis: the microenvironment moves to center stage. ACS Energy Lett. 8, 3935–3940 (2023).

    Article  CAS  Google Scholar 

  15. Sha, Y. et al. Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew. Chem. Int. Ed. 61, e202200039 (2022).

    Article  CAS  Google Scholar 

  16. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. et al. Strong hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to promote electrochemical CO2 reduction to C2+. ACS Catal. 14, 3457–3465 (2024).

    Article  CAS  Google Scholar 

  18. Noh, S., Cho, Y. J., Zhang, G. & Schreier, M. Insight into the role of entropy in promoting electrochemical CO2 reduction by imidazolium cations. J. Am. Chem. Soc. 145, 27657–27663 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Liang, Y. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth. 3, 1104–1112 (2024).

    Article  CAS  Google Scholar 

  20. Gomes, R. J. et al. Modulating water hydrogen bonding within a non-aqueous environment controls its reactivity in electrochemical transformations. Nat. Catal. 7, 689–701 (2024).

    Article  CAS  Google Scholar 

  21. Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  23. Chan, K. A few basic concepts in electrochemical carbon dioxide reduction. Nat. Commun. 11, 5954 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dubouis, N. et al. The fate of water at the electrochemical interfaces: electrochemical behavior of free water versus coordinating water. J. Phys. Chem. Lett. 9, 6683–6688 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Dubouis, N. et al. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3, 656–663 (2020).

    Article  CAS  Google Scholar 

  26. Dorchies, F. et al. Controlling the hydrophilicity of the electrochemical interface to modulate the oxygen-atom transfer in electrocatalytic epoxidation reactions. J. Am. Chem. Soc. 144, 22734–22746 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Dorchies, F. & Grimaud, A. Fine tuning of electrosynthesis pathways by modulation of the electrolyte solvation structure. Chem. Sci. 14, 7103–7113 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ataka, K.-i, Yotsuyanagi, T. & Osawa, M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. 100, 10664–10672 (1996).

    Article  CAS  Google Scholar 

  29. Wuttig, A., Ryu, J. & Surendranath, Y. Electrolyte competition controls surface binding of CO intermediates to CO2 reduction catalysts. J. Phys. Chem. C 125, 17042–17050 (2021).

    Article  CAS  Google Scholar 

  30. Yang, X. et al. Cation-induced interfacial hydrophobic microenvironment promotes the C–C coupling in electrochemical CO2 reduction. J. Am. Chem. Soc. 146, 5532–5542 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  32. Sun, Q. Local statistical interpretation for water structure. Chem. Phys. Lett. 568–569, 90–94 (2013).

    Article  Google Scholar 

  33. Hu, Q. & Zhao, H. Understanding the effects of chlorine ion on water structure from a Raman spectroscopic investigation up to 573 K. J. Mol. Struct. 1182, 191–196 (2019).

    Article  CAS  Google Scholar 

  34. Romanenko, A. V., Rashchenko, S. V., Goryainov, S. V., Likhacheva, A. Y. & Korsakov, A. V. In situ Raman study of liquid water at high pressure. Appl. Spectrosc. 72, 847–852 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Scatena, L. F., Brown, M. G. & Richmond, G. L. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Schreier, M., Yoon, Y., Jackson, M. N. & Surendranath, Y. Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. Angew. Chem. Int. Ed. 57, 10221–10225 (2018).

    Article  CAS  Google Scholar 

  38. Xue, S., Garlyyev, B., Auer, A., Kunze-Liebhäuser, J. & Bandarenka, A. S. How the nature of the alkali metal cations influences the double-layer capacitance of Cu, Au, and Pt single-crystal electrodes. J. Phys. Chem. C 124, 12442–12447 (2020).

    Article  CAS  Google Scholar 

  39. Aoki, K. J., He, R. & Chen, J. Double-layer capacitances caused by ion–solvent interaction in the form of Langmuir-typed concentration dependence. Electrochem 2, 631–642 (2021).

    Article  CAS  Google Scholar 

  40. Koper, M. T. M. & van Santen, R. A. Electric field effects on CO and NO adsorption at the Pt(111) surface. J. Electroanal. Chem. 476, 64–70 (1999).

    Article  CAS  Google Scholar 

  41. Li, C.-Y. et al. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13, 5330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications (Wiley, 2022).

  43. Rodellar, C. G., Gisbert-Gonzalez, J. M., Sarabia, F., Roldan Cuenya, B. & Oener, S. Z. Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces. Nat. Energy 9, 548–558 (2024).

    Article  CAS  Google Scholar 

  44. Laidler, K. J. & King, M. C. Development of transition-state theory. J. Phys. Chem. 87, 2657–2664 (1983).

    Article  CAS  Google Scholar 

  45. Lee, K.-G. et al. Importance of entropic contribution to electrochemical water oxidation catalysis. ACS Energy Lett. 4, 1918–1929 (2019).

    Article  CAS  Google Scholar 

  46. Exner, K. S. & Over, H. Kinetics of electrocatalytic reactions from first-principles: a critical comparison with the ab initio thermodynamics approach. Acc. Chem. Res. 50, 1240–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Cornish-Bowden, A. Enthalpy–entropy compensation as deduced from measurements of temperature dependence. In Protein‐Ligand Interactions (eds Mannhold, R., Kubinyi, H., Folkers, G. & Gohlke, H) 33–43 (Wiley, 2012); https://doi.org/10.1002/9783527645947.ch3

  48. Starikov, E. B. & Nordén, B. Enthalpy–entropy compensation: a phantom or something useful? J. Phys. Chem. B 111, 14431–14435 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Cornish-Bowden, A. Enthalpy–entropy compensation: a phantom phenomenon. J. Biosci. 27, 121–126 (2002).

    Article  PubMed  Google Scholar 

  50. He, Z.-D., Chen, Y.-X., Santos, E. & Schmickler, W. The pre-exponential factor in electrochemistry. Angew. Chem. Int. Ed. 57, 7948–7956 (2018).

    Article  CAS  Google Scholar 

  51. Xu, Y., Xia, Z., Gao, W., Xiao, H. & Xu, B. Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu. Nat. Catal. 7, 1120–1129 (2024).

    Article  Google Scholar 

  52. Sarabia, F., Gomez Rodellar, C., Roldan Cuenya, B. & Oener, S. Z. Exploring dynamic solvation kinetics at electrocatalyst surfaces. Nat. Commun. 15, 8204 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Camden, J. P. et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130, 12616–12617 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  55. Raciti, D. et al. SHINERS study of chloride order–disorder phase transition and solvation of Cu(100). J. Am. Chem. Soc. 146, 1588–1602 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun, Q. Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012).

    Article  CAS  Google Scholar 

  57. Du, Q., Freysz, E. & Shen, Y. R. Surface Vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264, 826–828 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Osawa, M., Tsushima, M., Mogami, H., Samjeské, G. & Yamakata, A. Structure of water at the electrified platinum–water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).

    Article  CAS  Google Scholar 

  59. Du, Q., Freysz, E. & Shen, Y. R. Vibrational spectra of water molecules at quartz/water interfaces. Phys. Rev. Lett. 72, 238–241 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Toney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444–446 (1994).

    Article  CAS  Google Scholar 

  61. Ataka, K.-i & Osawa, M. In situ infrared study of water–sulfate coadsorption on gold(111) in sulfuric acid solutions. Langmuir 14, 951–959 (1998).

    Article  CAS  Google Scholar 

  62. Jorcin, J.-B., Orazem, M. E., Pebere, N. & Tribollet, B. CPE analysis by local impedance analysis. Electrochim. Acta 51, 1473–1479 (2006).

    Article  CAS  Google Scholar 

  63. Singh, R. K., Devivaraprasad, R., Kar, T., Chakraborty, A. & Neergat, M. Electrochemical impedance spectroscopy of oxygen reduction reaction (ORR) in a rotating disk electrode configuration: effect of ionomer content and carbon-support. J. Electrochem. Soc. 162, F489–F498 (2015).

    Article  CAS  Google Scholar 

  64. Droog, J. M. M., Alderliesten, C. A., Alderliesten, P. T. & Bootsma, G. A. Initial stages of anodic oxidation of polycrystalline copper electrodes in alkaline solution. J. Electroanal. Chem. 111, 61–70 (1980).

    Article  CAS  Google Scholar 

  65. Droog, J. M. M. & Schlenter, B. Oxygen electrosorption on copper single crystal electrodes in sodium hydroxide solution. J. Electroanal. Chem. 112, 387–390 (1980).

    Article  CAS  Google Scholar 

  66. Raciti, D., Livi, K. J. & Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 15, 6829–6835 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Vargas-Barbosa, N. M. & Roling, B. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces. J. Chem. Phys. 148, 193820 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.S.H. acknowledges financial support from the National Science Foundation (award nos. CBET-2326720 and CHE-2102648) and the American Chemical Society Petroleum Research Fund. H.Z. acknowledges support from the National Science Foundation Graduate Research Fellowship (grant no. 2139757). Certain commercial equipment, instruments, software or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

A.S.H. conceived the idea. A.S.H. and D.R. supervised the project, analysed the data and wrote the paper. H.Z. performed the electrolysis experiments and temperature-dependent experiments and processed the data. D.R. performed the in situ Raman spectroscopy experiments.

Corresponding authors

Correspondence to David Raciti or Anthony Shoji Hall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Franz Geiger, Sebastian Oener and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Tables 1–8.

Source data

Source Data Fig. 1

Raw data points used to create the figure.

Source Data Fig. 2

Raw data points used to create the figure.

Source Data Fig. 3

Raw data points used to create the figure.

Source Data Fig. 4

Raw data points used to create the figure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Raciti, D. & Hall, A.S. Disordered interfacial H2O promotes electrochemical C–C coupling. Nat. Chem. 17, 1161–1168 (2025). https://doi.org/10.1038/s41557-025-01859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01859-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing