Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast charging of two-dimensional polymer cathodes enabled by cross-flow structure design

Abstract

While ultrafast charging and discharging is highly desired for energy storage, the densely packed crystalline inorganic electrodes suffer from sluggish ion transport that limits this capability. Here we report two-dimensional vertical ladder polymer cathode materials that feature layered nanosheets with rich intralayer pores and structural defects alongside weak interlayer interactions. This structural design allows lithium ions to migrate vertically across the intrinsic pores and/or defects accompanied by horizontal intercalation, thus establishing a cross-flow pathway for lithium storage. Such an effective ion-transport method enables flash charging of an ultrahigh-power polymer cathode to ~70% state-of-charge within 30 s at a high current density. Even operated at −50 °C, the polymer cathode achieves 3-min charging to ~55% state-of-charge. Furthermore, we propose an organic–inorganic hybrid strategy that overall improves the electrode-level specific energy at high rates for meeting practical metrics. This work demonstrates the potential of organic electrodes for high-power output under extreme operational conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cross-flow structure design for ultrafast-charging polymer cathodes.
Fig. 2: Structural characterization of 2DVLPs.
Fig. 3: Electrochemical performance of 2DVLPs.
Fig. 4: Li+ transport mechanism in 2DVLPs.
Fig. 5: Low-temperature performance of 2DVLPs.
Fig. 6: Improvement of electrode-level specific energy.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and Supplementary information. Source data are provided with this paper.

References

  1. Viswanathan, V. et al. The challenges and opportunities of battery-powered flight. Nature 601, 519–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, X.-G., Liu, T., Ge, S., Rountree, E. & Wang, C.-Y. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft. Joule 5, 1644–1659 (2021).

    Article  Google Scholar 

  3. Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Howell, D., Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  Google Scholar 

  5. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  6. Yuan, M., Liu, H. & Ran, F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today 63, 360–379 (2023).

    Article  CAS  Google Scholar 

  7. Weiss, M. et al. Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 (2021).

    Article  CAS  Google Scholar 

  8. Sun, H. et al. Three-dimensional holey-graphene niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Tu, S. et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat. Energy 8, 1365–1374 (2023).

    Article  CAS  Google Scholar 

  10. Billaud, J., Bouville, F., Magrini, T., Villevieille, C. & Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016).

    Article  CAS  Google Scholar 

  11. Noh, H.-J. et al. Cathode material with nanorod structure––an application for advanced high-energy and safe lithium batteries. Chem. Mater. 25, 2109–2115 (2013).

    Article  CAS  Google Scholar 

  12. Liang, L. et al. Nasicon-type surface functional modification in core shell LiNi0.5Mn0.3Co0.2O2@NaTi2(PO4)3 cathode enhances its high-voltage cycling stability and rate capacity toward Li-ion batteries. ACS Appl. Mater. Interfaces 10, 5498–5510 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, X. et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 9, 1803963 (2019).

    Article  Google Scholar 

  14. Wen, J., Ma, X., Li, L., Zhang, X. & Wang, B. Ion transport phenomena in electrode materials. Chem. Phys. Rev. 4, 021302 (2023).

    Article  CAS  Google Scholar 

  15. Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015).

    Article  CAS  Google Scholar 

  16. Wang, J. & Sun, X. Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 8, 1110–1138 (2015).

    Article  CAS  Google Scholar 

  17. Cao, Y. et al. Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy Mater. 12, 2200057 (2022).

    Article  CAS  Google Scholar 

  18. Henrique, F., Zuk, P. J. & Gupta, A. A network model to predict ionic transport in porous materials. Proc. Natl Acad. Sci. USA 121, e2401656121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

    Article  Google Scholar 

  20. Mangrulkar, C. K., Dhoble, A. S., Chamoli, S., Gupta, A. & Gawande, V. B. Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers. Renew. Sust. Energ. Rev. 113, 109220 (2019).

    Article  Google Scholar 

  21. Rayess et al. Cross-flow microfiltration applied to oenology: a review. J. Membr. Sci. 382, 1–19 (2011).

    Article  Google Scholar 

  22. Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article  CAS  Google Scholar 

  23. Sun, T., Xie, J., Guo, W., Li, D.-S. & Zhang, Q. Covalent-organic frameworks: advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 10, 1904199 (2020).

    Article  CAS  Google Scholar 

  24. Zhu, D. et al. Covalent organic frameworks for batteries. Adv. Funct. Mater. 31, 2100505 (2021).

    Article  CAS  Google Scholar 

  25. Sun, J., Xu, Y., Lv, Y., Zhang, Q. & Zhou, X. Recent advances in covalent organic framework electrode materials for alkali metal-ion batteries. CCS Chem 5, 1259–1267 (2023).

    Article  CAS  Google Scholar 

  26. Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z. et al. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 11, 5330–5335 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X. et al. In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries. Adv. Mater. 34, 2203605 (2022).

    Article  CAS  Google Scholar 

  29. Jiang, Y. & Chen, C.-F. Recent developments in synthesis and applications of triptycene and pentiptycene derivatives. Eur. J. Org. Chem. 2011, 6377–6403 (2011).

    Article  CAS  Google Scholar 

  30. Chen, C.-F. & Han, Y. Triptycene-derived macrocyclic arenes: from calixarenes to helicarenes. Acc. Chem. Res. 51, 2093–2106 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Seiki, N. et al. Rational synthesis of organic thin films with exceptional long-range structural integrity. Science 348, 1122–1126 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, A. et al. Solution-processable redox-active polymers of intrinsic microporosity for electrochemical energy storage. J. Am. Chem. Soc. 144, 17198–17208 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kissel, P. et al. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Li, P. et al. Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem. Int. Ed. 58, 1664–1669 (2019).

    Article  CAS  Google Scholar 

  35. Lv, J. et al. A triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane. Angew. Chem. Int. Ed. 62, e202217958 (2023).

    Article  CAS  Google Scholar 

  36. Zhou, T.-Y., Lin, F., Li, Z.-T. & Zhao, X. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 46, 7745–7752 (2013).

    Article  CAS  Google Scholar 

  37. Kwon, J. E. et al. Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries. J. Mater. Chem. A 6, 3134–3140 (2018).

    Article  CAS  Google Scholar 

  38. Shoji, Y., Yamamoto, S. & Fukushima, T. Perchlorinated triptycene tribenzoquinone. Chem. Lett. 50, 1240–1243 (2021).

    Article  CAS  Google Scholar 

  39. Ong, W. J. & Swager, T. M. Dynamic self-correcting nucleophilic aromatic substitution. Nat. Chem. 10, 1023–1030 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Zeng, Y. et al. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 602, 91–95 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, T. et al. Ultasfast 3D hybrid-ion transport in porous V2O5 cathodes for superior-rate rechargeable aqueous zinc batteries. Adv. Energy Mater. 13, 2204358 (2023).

    Article  CAS  Google Scholar 

  42. Zhang, H., Sun, W., Chen, X. & Wang, Y. Few-layered fluorinated triazine-based covalent organic nanosheets for high-performance alkali organic batteries. ACS Nano 13, 14252–14261 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, Y. et al. Accelerating ion dynamics under cryogenic conditions by the amorphization of crystalline cathodes. Adv. Mater. 33, 2102634 (2021).

    Article  CAS  Google Scholar 

  44. Lu, Y., Zhang, Q., Li, L., Niu, Z. & Chen, J. Design strategies towards enhancing the performance of organic electrode materials in metal-ion batteries. Chem 4, 2786–2813 (2018).

    Article  CAS  Google Scholar 

  45. Wild, A., Strumpf, M., Häupler, B., Hager, M. D. & Schubert, U. S. All-organic battery composed of thianthrene- and TCAQ-based polymers. Adv. Energy Mater. 7, 1601415 (2017).

    Article  Google Scholar 

  46. Xie, J., Wang, Z., Xu, Z. J. & Zhang, Q. Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv. Energy Mater. 8, 1703509 (2018).

    Article  Google Scholar 

  47. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Mao, M. et al. Electronic conductive inorganic cathodes promising high-energy organic batteries. Adv. Mater. 33, 2005781 (2021).

    Article  CAS  Google Scholar 

  50. Kim, J. et al. Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Testing Technology Center of Materials and Devices of Tsinghua Shenzhen International Graduate School (SIGS) for providing the technical assistance on characterization. This work is financially supported by Guangdong Provincial Department of Science and Technology (grant nos. 2023ZT10L039 and 2021QN02C070 to Z.C.), Shenzhen Science and Technology Program (grant nos. KQTD20240729102048053 and JCYJ20220530143006014 to Z.C.) and the scientific research startup fund (grant nos. QD2021018C to Z.C. and QD2021029C to L.P.) and the cross-disciplinary research and innovation fund (grant no. JC2022006 to Z.C.) from Tsinghua SIGS.

Author information

Authors and Affiliations

Authors

Contributions

X.D. and Z.C. conceived of the idea and designed the experiments. X.D. conducted the synthesis, characterization and measurements. L.L. conducted the partial synthesis and measurements. S.Z. and Q.C. performed the theoretical calculation. Y.C. and M.L. carried out the solid-state NMR experiments. X.Z., H.W., T.H., M.L., D.Z. and L.P. participated in the data analysis and discussion. Z.C. and L.P. led the project. X.D. and Z.C. drafted the paper.

Corresponding authors

Correspondence to Lele Peng or Zhen Chen.

Ethics declarations

Competing interests

Tsinghua University and Z.C., X.D. and L.L. have filed a patent (no. 2024102707896) for the synthetic method of polymer cathodes reported in this paper. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ji Eon Kwon, Qilei Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Method, Notes 1–3, Figs. 1–44 and Tables 1–6.

Supplementary Data 1

Cartesian coordination of modelling compounds.

Supplementary Data 2

CONTCAR of 2DVLPs associated with Li.

Source data

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 4

Raw data for Fig. 4.

Source Data Fig. 5

Raw data for Fig. 5.

Source Data Fig. 6

Raw data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Liu, L., Zhang, S. et al. Ultrafast charging of two-dimensional polymer cathodes enabled by cross-flow structure design. Nat. Chem. 17, 1546–1555 (2025). https://doi.org/10.1038/s41557-025-01899-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01899-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing