Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cooperative spin alignment enhances dimerization in the electrochemical ammonia oxidation reaction

Abstract

Ammonia has recently attracted growing attention as a promising hydrogen carrier because it can be liquefied and stored in bulk under mild conditions. To fully harness its potential, more efforts are needed to elucidate and control the mechanisms of its decomposition. Here we show that intermediate dimerization processes proceed through a cooperative spin alignment effect between intermediates and can be promoted by the magnetic ordering rearrangement of magnetic substrates. We explored a series of Co/Pt magnetic thin-film catalysts as model materials to investigate spin-sensitive NHx dimerization and eventual enhancement on catalytic activity. Through in situ spectroscopic analysis and theoretical verification, we demonstrate that coupling of N–NH with aligned net magnetic moments is the most favourable with the lowest energy barriers. This provides a precedent for understanding spin kinetics to help improve the catalytic efficiency of electrochemical ammonia decomposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of magnetization-enhanced AOR in experimental manifestations.
Fig. 2: sXAS diagnosis of spin-sensitive intermediate species.
Fig. 3: Theoretical calculation and verification.
Fig. 4: Magnetic domain structure of Co/Pt thin films and magnetization enhancement mechanism.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Vogt, E. T. & Weckhuysen, B. M. The refinery of the future. Nature 629, 295–306 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Soloveichik, G. H2IQ Hour: Ammonia: From Fertilizer to Energy Carriers (US Department of Energy, 2021).

  3. Fu, X. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 379, 707–712 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Li, S. et al. Long-term continuous ammonia electrosynthesis. Nature 629, 92–97 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Green, L. An ammonia energy vector for the hydrogen economy. Int. J. Hydrogen Energy 7, 355–359 (1982).

    Article  CAS  Google Scholar 

  6. Chang, F., Gao, W., Guo, J. & Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 33, e2005721 (2021).

    Article  PubMed  Google Scholar 

  7. Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mukherjee, S., Devaguptapu, S. V., Sviripa, A., Lund, C. R. F. & Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B 226, 162–181 (2018).

    Article  CAS  Google Scholar 

  9. Adli, N. M., Zhang, H., Mukherjee, S. & Wu, G. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 165, J3130–J3147 (2018).

    Article  CAS  Google Scholar 

  10. Boisen, A., Dahl, S., Nørskov, J. K. & Christensen, C. H. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 230, 309–312 (2005).

    Article  CAS  Google Scholar 

  11. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosca, V. & Koper, M. T. M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Phys. Chem. Chem. Phys. 8, 2513–2524 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Pillai, H. S. et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 14, 792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 10, 3945–3957 (2020).

    Article  CAS  Google Scholar 

  15. Oswin, H. G. & Salomon, M. The anodic oxidation of ammonia at platinum black electrodes in aqueous KOH electrolyte. Can. J. Chem. 41, 1686–1694 (1963).

    Article  CAS  Google Scholar 

  16. Gerischer, H. & Mauerer, A. Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden. J. Electroanal. Chem. 25, 421–433 (1970).

    Article  CAS  Google Scholar 

  17. Katsounaros, I. et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment. J. Catal. 359, 82–91 (2018).

    Article  CAS  Google Scholar 

  18. Yang, X. et al. Achievements, challenges, and perspectives on nitrogen electrochemistry for carbon‐neutral energy technologies. Angew. Chem. Int. Ed. 135, e202215938 (2023).

    Article  Google Scholar 

  19. Trenerry, M. J., Wallen, C. M., Brown, T. R., Park, S. V. & Berry, J. F. Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia. Nat. Chem. 13, 1221–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Garcés-Pineda, F. A., Blasco-Ahicart, M., Nieto-Castro, D., López, N. & Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019).

    Article  Google Scholar 

  21. Wu, T. & Xu, Z. J. Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 30, 100804 (2021).

    Article  CAS  Google Scholar 

  22. Dougherty, D. A. Spin control in organic molecules. Acc. Chem. Res. 24, 88–94 (1991).

    Article  CAS  Google Scholar 

  23. Goodenough, J. B. Spin–orbit-coupling effects in transition-metal compounds. Phys. Rev. 171, 466–479 (1968).

    Article  CAS  Google Scholar 

  24. Gracia, J. Spin dependent interactions catalyse the oxygen electrochemistry. Phys. Chem. Chem. Phys. 19, 20451–20456 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Mott, N. F. Electrons in transition metals. Adv. Phys. 13, 325–422 (1964).

  26. Ermolaeva, O. L. et al. Magnetic force microscopy of nanostructured Co/Pt multilayer films with perpendicular magnetization. Materials (Basel) 10, 1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Charilaou, M. et al. Magnetic properties of ultrathin discontinuous Co/Pt multilayers: comparison with short-range ordered and isotropic CoPt3 films. Phys. Rev. B 93, 224408 (2016).

    Article  Google Scholar 

  28. Rellinghaus, B., Weller, D., Tran, M. Q. & Hellman, F. Growth-induced magnetic anisotropy and clustering in vapor-deposited Co–Pt alloy films. Phys. Rev. B 60, 12826–12836 (1999).

    Article  Google Scholar 

  29. Wang, K. et al. Optimization of Co/Pt multilayers for applications of current-driven domain wall propagation. J. Appl. Phys. 110, 083913 (2011).

    Article  Google Scholar 

  30. Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Duan, H. et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 10, 1584 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cross, J. O. et al. Growth induced magnetic and chemical anisotropy in CoPt3 alloy films. J. Synchrotron Radiat. 8, 880–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jakubowski, M. M. et al. On defects’ role in enhanced perpendicular magnetic anisotropy in Pt/Co/Pt, induced by ion irradiation. J. Phys. Condens. Matter 31, 185801 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Article  Google Scholar 

  35. Gao, H. et al. Reducing the Ir−O coordination number in anodic catalysts based on IrOx nanoparticles towards enhanced proton-exchange-membrane water electrolysis. Angew. Chem. Int. Ed. 62, e202313954 (2023).

    Article  CAS  Google Scholar 

  36. Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021).

    Article  CAS  Google Scholar 

  37. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Vargas-Hernández, R. A. Bayesian optimization for calibrating and selecting hybrid-density functional models. J. Phys. Chem. A 124, 4053–4061 (2020).

    Article  PubMed  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  40. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  41. Yoo, J., Choi, J., Choi, S., Lee, C. & Lee, H. M. Facet-controlled Pt3M alloys as enhanced catalysts for ammonia oxidation reaction: a combined theoretical and experimental study. ACS Catal. 15, 167–178 (2025).

    Article  CAS  Google Scholar 

  42. Su, Y. et al. Ferromagnetic L12-Pt3Co nanowires with spin-polarized orbitals for fast and selective oxygen reduction electrocatalysis. Adv. Funct. Mater. 34, 2311618 (2024).

    Article  CAS  Google Scholar 

  43. Biz, C., Fianchini, M., Polo, V. & Gracia, J. Magnetism and Heterogeneous catalysis: in depth on the quantum spin-exchange interactions in Pt3M (M = V, Cr, Mn, Fe, Co, Ni, and Y) (111) alloys. ACS Appl. Mater. Interfaces 12, 50484–50494 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 32, 174–182 (2012).

    Google Scholar 

  45. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  46. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Research Foundation, Singapore, and A*STAR (Agency for Science, Technology and Research) under its LCER Phase 2 Programme Hydrogen & Emerging Technologies FI, Directed Hydrogen Programme (award number U2305D4003 to Z.J.X.) and the National Research Foundation under its Frontier Competitive Research Programme (NRF-F-CRP-2024-0008 to Z.J.X.). The synchrotron radiation experiments were performed at the Soft X-ray Spectroscopy Beamline at the Australian Synchrotron, with the support of the Singapore-International Synchrotron Access Programme (SG-ISAP) by the National Synchrotron Programme, Singapore to S.Z., T.W. and X.L. We thank the National Nature Science Foundation of China for support (grant number 52072060 to T.L.). S.Z. gratefully acknowledges support from Q. Chen via the National Natural Science Foundation of China (grant number 52125604).

Author information

Authors and Affiliations

Contributions

Z.J.X. conceived the study and supervised the project. S.Z. designed and performed experiments. S.Z., A.Y., T.W., Q.W. and Z.J.X. analysed and interpreted data. X.R., D.D., T.L., Q.W. and M.Y. fabricated the thin films and performed thin-film characterization. Z.J.X. and S.Z. proposed the mechanism. Q.W. performed the theoretical calculations. S.Z., T.W., X.L. and A.T. performed the sXAS experiments. S.Z., C.D. and Z.J.X. wrote and edited the paper. All authors reviewed and edited the paper.

Corresponding author

Correspondence to Zhichuan J. Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Leanne Chen, Ping Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wu, Q., Dai, C. et al. Cooperative spin alignment enhances dimerization in the electrochemical ammonia oxidation reaction. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01900-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing