Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible fluorenol photobases that perform CO2 capture and concentration from ambient air

Abstract

Leading strategies for the capture of CO2 from point sources and directly from the atmosphere face high energy costs for thermal sorbent regeneration. Photochemical processes, driven by sunlight as the sole external stimulus, offer a promising alternative. Despite many reported examples of light-induced pH swings using metastable photoacids, the complementary mode of operation, using photoswitchable bases, has not been extensively considered. This is due in part to the rarity of photobases that can support large, reversible pH jumps in water. Here we report the design of fluorenol-based Arrhenius photobases that take advantage of excited-state aromaticity and ground-state antiaromaticity to generate large basicity swings with high reversibility. The system is oxygen stable, can be driven by natural sunlight and captures/concentrates CO2 from ambient air. We elucidated the mechanism of C–O dissociation using transient absorption spectroscopy to understand the high efficiency of hydroxide release. This study provides a framework for the design of photoreversible aqueous bases and guiding principles for their use in solar-powered CO2 management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of fluorenol photobases.
Fig. 2: Light-driven reversible CO2 capture.
Fig. 3: Ultrafast spectroscopic characterization of PBMeOH in MeCN/H2O.
Fig. 4: Energy-level diagram of PBMeOH photochemical homolysis and heterolysis pathways.
Fig. 5: Potential mechanisms of CO2 release.
Fig. 6: Thermodynamic diagram for reversible CO2 capture.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Article  Google Scholar 

  2. Gulev, S. K. et al. Climate Change 2021: The Physical Science Basis Summary for Policymakers Ch. 1–4 (Cambridge Univ. Press, 2021).

  3. Schleussner, C.-F. et al. Overconfidence in climate overshoot. Nature 634, 366–373 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Leung, D. Y. C., Caramanna, G. & Mercedes, M. V. M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014).

    Article  CAS  Google Scholar 

  5. Gibbins, J. & Chalmers, H. Carbon capture and storage. Energy Policy 36, 4317–4322 (2015).

    Article  Google Scholar 

  6. Hanna, R., Abdulla, A., Xu, Y. & Victor, D. G. Emergency deployment of direct air capture as a response to the climate crisis. Nat. Commun. 12, 368 (2025).

    Article  Google Scholar 

  7. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  PubMed  Google Scholar 

  8. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  9. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2011).

    Article  Google Scholar 

  10. Ding, X., Chen, H., Li, J. & Zhou, T. Comparative techno-economic analysis of CO2 capture processes using blended amines. Carbon Capture Sci. Technol. 9, 100136 (2023).

    CAS  Google Scholar 

  11. Zito, A. M. et al. Electrochemical carbon dioxide capture and concentration. Chem. Rev. 123, 8069–8098 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, T., Lackner, K. S. & Wright, A. Moisture swing sorbent for carbon dioxide capture from ambient air. Environ. Sci. Technol. 45, 6670–6675 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Lim, T. H., Foster, J. E., Ellis, B. R. & Skerlos, S. J. Microwave-based CO2 desorption for enhanced direct air capture: experimental validation and techno-economic perspectives. Environ. Res. Lett. 19, 034002 (2024).

    Article  CAS  Google Scholar 

  14. Alfaraidi, A. M. et al. Reversible CO2 capture and on-demand release by an acidity-matched organic photoswitch. J. Am. Chem. Soc. 145, 26720–26727 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. de Vries, A., Goloviznina, K., Reiter, M., Salanne, M. & Lukatskaya, M. R. Solvation-tuned photoacid as a stable light-driven pH switch for CO2 capture and release. Chem. Mater. 36, 1308–1317 (2024).

    Article  PubMed  Google Scholar 

  16. Cotton, D., Khuu, T., Takematsu, K., Delibas, B. & Dawlaty, J. M. Photoinduced carbon dioxide release via a metastable photoacid in a nonaqueous environment. J. Phys. Chem. Lett. 15, 7782–7787 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Premadasa, U. I. et al. Photochemically-driven CO2 release using a metastable-state photoacid for energy efficient direct air capture. Angew. Chem. Int. Ed. 62, e202304957 (2023).

    Article  CAS  Google Scholar 

  18. Li, M., Irtem, E., Iglesias van Montfort, H. P., Abdinejad, M. & Burdyny, T. Energy comparison of sequential and integrated CO2 capture and electrochemical conversion. Nat. Commun. 13, 5398 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sen, R., Goeppert, A., Kar, S. & Prakash, G. K. S. Hydroxide based integrated CO2 capture from air and conversion to methanol. J. Am. Chem. Soc. 142, 4544–4549 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Pei, Y., Zhang, B. & Lu, Y. Next nanotechnology carbon capture and utilization via electrochemistry, what’s next? Next Nanotechnol. 3–4, 100020 (2023).

    Article  Google Scholar 

  21. Pang, S. et al. A phenazine-based high-capacity and high-stability electrochemical CO2 capture cell with coupled electricity storage. Nat. Energy 8, 1126–1136 (2023).

    Article  CAS  Google Scholar 

  22. Seo, H. & Hatton, T. A. Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material. Nat. Commun. 14, 313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin, S., Wu, M., Jing, Y., Gordon, R. G. & Aziz, M. J. Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing. Nat. Commun. 13, 2140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barlow, J. M. & Yang, J. W. Oxygen-stable electrochemical CO2 capture and concentration with quinones using alcohol additives. J. Am. Chem. Soc. 144, 14161–14169 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Wimberger, L. et al. Large, tunable, and reversible pH changes by merocyanine photoacids. J. Am. Chem. Soc. 143, 20758–20768 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Wilm, L. F. B. et al. Photoswitchable nitrogen superbases: using light for reversible carbon dioxide capture. Angew.Chem. Int. Ed. 61, e202112344 (2022).

    Article  CAS  Google Scholar 

  27. Sheng, W. et al. Proton transfer ultrafast dynamics of a ‘super’ photobase. Angew. Chem. Int. Ed. 57, 14742–14746 (2018).

    Article  CAS  Google Scholar 

  28. Han, G. R. et al. Shedding new light on an old molecule: quinophthalone displays uncommon N-to-O excited state intramolecular proton transfer (ESIPT) between photobases. Sci. Rep. 7, 3863 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yucknovsky, A. & Amdursky, N. Controlling pH-sensitive chemical reactions pathways with light—a tale of two photobases: an Arrhenius and a Brønsted. Chem. Eur. J. 30, e202303767 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Voegtle, M. J. & Dawlaty, J. W. Can Brønsted photobases act as Lewis photobases? J. Am. Chem. Soc. 144, 28178–28184 (2022).

    Article  Google Scholar 

  31. Gaillard, E., Fox, M. A. & Wan, P. A. Kinetic study of the photosolvolysis of 9-fluorenol. J. Am. Chem. Soc. 111, 2180–2186 (1989).

    Article  CAS  Google Scholar 

  32. Blazek, A., Pungente, M., Krogh, E. & Wan, P. Photosolvolysis of 9-fluorenol derivatives in aqueous solution—exploratory studies of reactivity of photogenerated 9-fluorenyl cations. J. Photochem. Photobiol. A 64, 315–327 (1992).

    Article  CAS  Google Scholar 

  33. Chahinez, A. et al. A long-lived fluorenyl cation: efficiency booster for uncaging and photobase properties. Phys. Chem. Chem. Phys. 24, 5294–5300 (2022).

    Article  Google Scholar 

  34. Irie, M. Light-induced reversible pH change. J. Am. Chem. Soc. 105, 2078–2079 (1983).

    Article  CAS  Google Scholar 

  35. Uda, R. M. & Takenaka, D. Malachite green leuco derivatives as photobase generators for initiating crosslinking and polymerization. Mater. Lett. 303, 130541 (2021).

    Article  CAS  Google Scholar 

  36. Huajie, L. et al. Light-driven conformational switch of i-motif DNA. Angew. Chem. Int. Ed. 46, 2515–2517 (2007).

    Article  Google Scholar 

  37. Carvalho, P. C., Uzunova, D. V., Da Silva, J. P., Nau, W. M. & Pischel, U. A photoinduced pH jump applied to drug release from cucurbit[7]uril. Chem. Commun. 47, 8793–8.795 (2011).

    Article  CAS  Google Scholar 

  38. Hermanns, V. et al. Rethinking uncaging: a new antiaromatic photocage driven by a gain of resonance energy. Chem. Eur. J. 27, 14121–14127 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Abdellaoui, C. et al. A long-lived fluorenyl cation: efficiency booster for uncaging and photobase properties. Phys. Chem. Chem. Phys. 24, 5294–5300 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Reinfelds, M. et al. A new photocage derived from fluorene. Chem. Eur. J. 24, 13026–13035 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Müller, P. et al. [Ru(bpy)3]2+ as a reference in transient absorption spectroscopy: differential absorption coefficients for formation of the long-lived 3MLCT excited state. Photochem. Photobiol. Sci. 11, 10–13 (2012).

    Article  Google Scholar 

  42. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wahidmurni et al. Photochemical formation and electrophilic reactivities of vinyl cations. Influence of substituents, anionic leaving groups, solvents, and excitation wavelength on photoheterolysis and photohomolysis of 1-(p-R-phenyl)-2-(2,2′-biphenyldiyl)vinyl halides. J. Phys. Chem. 98, 2588–2593 (2017).

    Google Scholar 

  44. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  45. Frisch M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).

  46. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  48. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 49, 3758–3772 (2005).

    Article  Google Scholar 

  50. Fallah-Bagher-Shaidaei, H., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. Which NICS aromaticity index for planar π rings is best? Org. Lett. 8, 6–9 (2006).

    Article  Google Scholar 

  51. Keith, T. A. & Bader, R. F. W. Calculation of magnetic response properties using atoms in molecules. Chem. Phys. Lett. 194, 1–8 (1992).

    Article  CAS  Google Scholar 

  52. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2011).

    Article  PubMed  Google Scholar 

  53. Li, Y. Energy Diagram Plotter CDXML 3.5.1. Zenodo https://doi.org/10.5281/zenodo.7187658 (2022).

Download references

Acknowledgements

R.Y.L. is grateful to the Corning Fund for Faculty Development and the Salata Institute for Climate and Sustainability for partial support of this project. This work was supported by the National Science Foundation through a CAREER award to R.Y.L. (CHE-2338206), a graduate research fellowship for A.Y.W. and support to D.G.N. from the Office of Naval Research (N00014-25-1-2100).

Author information

Authors and Affiliations

Authors

Contributions

M.P. designed, synthesized and structurally characterized all photobases. M.P. and A.Y.W. optically characterized the photobases using UV–vis spectroscopy. M.P. performed all CO2 experiments. A.Y.W. performed all density functional theory calculations. M.C.D. designed and performed all TA measurements. M.P., M.C.D., D.G.N. and R.Y.L. wrote the paper. All authors interpreted the results and commented on the paper.

Corresponding author

Correspondence to Richard Y. Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Grace Han, Josef Wachtveitl and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Ultrafast spectroscopic characterization of PBMeOH in dry MeCN.

All transient absorption (TA) presented in this figure were performed on air-equilibrated solutions of PBMeOH in a 1-cm pathlength quartz cuvette with the pump laser set to 360 nm. (a) Femtosecond TA spectra of PBMeOH in dry MeCN. (b) Kinetic traces at 750 nm (red dots) with monoexponential fits (red line). (c) Nanosecond TA spectra of PBMeOH in dry MeCN. (d) Kinetic traces of the nsTA data at 414 nm (grey dots) with monoexponential fit (red line).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Discussion and Table 1.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purdy, M., Wang, A.Y., Drummer, M.C. et al. Reversible fluorenol photobases that perform CO2 capture and concentration from ambient air. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01901-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing