Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Head–tail carboboration of multisubstituted alkenes enabled by chain recognition

Abstract

Precision in site-selective functionalization of molecules bearing multiple potentially reactive positions is a longstanding challenge in organic synthesis. Although migratory difunctionalization offers a powerful strategy for programmed functional group installation along carbon chains, its implementation with multisubstituted alkenes has been impeded by the increased complexity of site-selectivity. Here we report a head–tail carboboration of multisubstituted alkenes with exceptional site-selectivity, enabled by ligand steric exclusion in a nickel-catalysed chain-walking system. This catalytic system enables selective migratory transformations of tertiary alkyl–metal intermediates across a range of thermodynamically and kinetically accessible reaction site combinations. The importance of this study is evident in not only its capacity to efficiently couple structurally diverse carbon electrophiles with complex substrates, including natural terpenes, but also its contribution to streamlining the synthesis of natural products and materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Head–tail difunctionalization of multisubstituted alkenes via chain recognition.
Fig. 2: Alkene scope.
Fig. 3: Investigation of mechanism.
Fig. 4: Synthetic applications.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article and its Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2376317 (52), CCDC 2376318 (54-1) and CCDC 2313837 (56-1). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (Oxford Univ. Press, 2012).

  3. Zhu, J., Wang, Q. & Wang, M. Multicomponent Reactions in Organic Synthesis (Wiley, 2014).

  4. Davies, H. M. L. & Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem. 3, 347–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Whyte, A., Torelli, A., Mirabi, B., Zhang, A. & Lautens, M. Copper-catalyzed borylative difunctionalization of π-systems. ACS Catal. 10, 11578–11622 (2020).

    Article  CAS  Google Scholar 

  8. Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, D. et al. Overcoming limitations in non-activated alkene cross-coupling with nickel catalysis and anionic ligands. Nat. Catal. 7, 1154–1164 (2024).

    Article  CAS  Google Scholar 

  10. Wickham, L. M. & Giri, R. Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Y. Y. & Yin, G. Y. Nickel chain-walking catalysis: a journey to migratory carboboration of alkenes. Acc. Chem. Res. 56, 3246–3259 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Sommer, H., Juliá-Hernández, F., Martin, R. & Marek, I. Walking metals for remote functionalization. ACS Cent. Sci. 4, 153–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigalvarez, J., Haut, F.-L. & Martin, R. Regiodivergent sp3 C–H functionalization via Ni-catalyzed chain-walking reactions. JACS Au 3, 3270–3282 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y., Wu, D., Cheng, H.-G. & Yin, G. Difunctionalization of alkenes involving metal migration. Angew. Chem. Int. Ed. 59, 7990–8003 (2020).

    Article  CAS  Google Scholar 

  16. Ding, C., Ren, Y., Sun, C., Long, J. & Yin, G. Regio- and stereoselective alkylboration of endocyclic olefins enabled by nickel catalysis. J. Am. Chem. Soc. 143, 20027–20034 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Pang, H., Wu, D., Cong, H. & Yin, G. Stereoselective palladium-catalyzed 1,3-arylboration of unconjugated dienes for expedient synthesis of 1,3-disubstituted cyclohexanes. ACS Catal. 9, 8555–8560 (2019).

    Article  CAS  Google Scholar 

  18. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Sharifi-Rad, J. et al. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22, 70 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Beal, R. E., Toscano-Cantaffa, D., Young, P., Rechsteiner, M. & Pickart, C. M. The hydrophobic effect contributes to polyubiquitin chain recognition. Biochemistry 37, 2925–2934 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Qian, C. & Zhou, M. M. SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell. Mol. Life Sci. 63, 2755–2763 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, H. et al. Structural biology of human H3K9 methyltransferases. PLoS ONE 5, e8570 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luo, M. Chemical and biochemical perspectives of protein lysine methylation. Chem. Rev. 118, 6656–6705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhat, K. P., Kaniskan, H. Ü., Jin, J. & Gozani, O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat. Rev. Drug. Discov. 20, 265–286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braude, E. A., Coles, J. A., Evans, E. A. & Timmons, C. J. Steric effects in anionotropic rearrangements. Nature 177, 1167–1169 (1956).

    Article  CAS  Google Scholar 

  29. Ramadoss, B., Jin, Y., Asako, S. & Ilies, L. Remote steric control for undirected meta-selective C–H activation of arenes. Science 375, 658–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, D. et al. Alkene 1,1-difunctionalizations via organometallic-radical relay. Nat. Catal. 6, 1030–1041 (2023).

    Article  CAS  Google Scholar 

  31. Li, Y. et al. Modular access to substituted cyclohexanes with kinetic stereocontrol. Science 376, 749–753 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, W., Ding, C. & Yin, G. Catalyst-controlled enantioselective 1,1-arylboration of unactivated olefins. Nat. Catal. 3, 951–958 (2020).

    Article  CAS  Google Scholar 

  33. Sakai, H. A., Liu, W., Le, C. C. & MacMillan, D. W. C. Cross-electrophile coupling of unactivated alkyl chlorides. J. Am. Chem. Soc. 142, 11691–11697 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Logan, K. M., Sardini, S. R., White, S. D. & Brown, M. K. Nickel-catalyzed stereoselective arylboration of unactivated alkenes. J. Am. Chem. Soc. 140, 159–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Joung, S., Bergmann, A. M. & Brown, M. K. Ni-catalyzed 1,2-benzylboration of 1,2-disubstituted unactivated alkenes. Chem. Sci. 10, 10944–10947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jansen, D. J. & Shenvi, R. A. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med. Chem. 6, 1127–1146 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, S. et al. Cobalt-catalysed allylic fluoroalkylation of terpenes. Nat. Synth. 2, 1202–1210 (2023).

    Article  CAS  Google Scholar 

  38. Nairoukh, Z., Cormier, M. & Marek, I. Merging C–H and C–C bond cleavage in organic synthesis. Nat. Rev. Chem. 1, 0035 (2017).

    Article  Google Scholar 

  39. Di Martino, R. M. C., Maxwell, B. D. & Pirali, T. Deuterium in drug discovery: progress, opportunities and challenges. Nat. Rev. Drug. Discov. 22, 562–584 (2023).

    Article  PubMed  Google Scholar 

  40. Li, Z. et al. Nickel-catalyzed regio- and enantioselective borylative coupling of terminal alkenes with alkyl halides enabled by an anionic bisoxazoline ligand. J. Am. Chem. Soc. 145, 13603–13614 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Sun, C., Ding, C., Yu, Y., Li, Y. & Yin, G. Ligand-modulated regiodivergent alkenylboration of allylarenes: reaction development and mechanistic study. Fundam. Res. https://doi.org/10.1016/j.fmre.2023.03.016 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  43. Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Falivene, L. et al. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics 35, 2286–2293 (2016).

    Article  CAS  Google Scholar 

  45. Escayola, S., Bahri-Laleh, N. & Poater, A. %VBur index and steric maps: from predictive catalysis to machine learning. Chem. Soc. Rev. 53, 853–882 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals (Wiley, 2009).

  47. Li, X. et al. Regio- and enantioselective remote dioxygenation of internal alkenes. Nat. Chem. 15, 862–871 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Matteson, D. S. Stereodirected Synthesis with Organoboranes (Springer Science & Business Media, 2012).

  49. Sandford, C. & Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 53, 5481–5494 (2017).

    Article  CAS  Google Scholar 

  50. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  51. Gao, Y. et al. All-small-molecule organic solar cells with 18.1% efficiency and enhanced stability enabled by improving light harvesting and nanoscale microstructure. Joule 7, 2845–2858 (2023).

    Article  CAS  Google Scholar 

  52. Chen, C. L. et al. Tetrahedral liquid-crystalline networks: an A15-like Frank–Kasper phase based on rod-packing. Angew. Chem. Int. Ed. 61, e202203447 (2022).

    Article  CAS  Google Scholar 

  53. Schumm, J. S., Pearson, D. L. & Tour, J. M. Iterative divergent/convergent approach to linear conjugated oligomers by successive doubling of the molecular length: a rapid route to a 128 Å-long potential molecular wire. Angew. Chem. Int. Ed. 33, 1360–1363 (2003).

    Article  Google Scholar 

  54. Yang, Z. et al. Reptilian chemistry: characterization of a family of dianeackerone-related steroidal esters from a crocodile secretion. Proc. Natl Acad. Sci. USA 96, 12251–12256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krückert, K., Flachsbarth, B., Schulz, S., Hentschel, U. & Weldon, P. J. Ethyl-branched aldehydes, ketones, and diketones from caimans (Caiman and Paleosuchus; Crocodylia, Reptilia). J. Nat. Prod. 69, 863–870 (2006).

    Article  PubMed  Google Scholar 

  56. Yang, Z., Attygalle, A. B. & Meinwald, J. Reptilian chemistry: enantioselective syntheses of novel components from a crocodile exocrine secretion. Synthesis 2000, 1936–1943 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (grant nos. 22122107 to G.Y. and 22401220 to Yangyang Li), Guangdong Basic and Applied Basic Research Foundation (grant no. 2024A1515011689 to G.Y.), Fundamental Research Funds for the Central Universities (grant no. 413100070 to Yangyang Li) and Scientific Research Innovation Capability Support Project for Young Faculty (ZYGXQNJSKYCXNLZCXM-H17 to G.Y.) are acknowledged for financial support. We thank J. Min from Wuhan University for providing the intermediate compounds essential for synthesizing organic solar cells. We also thank the Core Facility of Wuhan University for their assistance with X-ray crystallographic analysis. Additionally, the numerical calculations for this research were conducted on the supercomputing system at the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Contributions

G.Y. designed the project and directed the work. W.K., H.W., D.W. and P.L. conducted the experiments and data analysis. B.G. and Yuqiang Li performed all density functional theory calculations. G.Y., W.K., D.W. and Yangyang Li wrote the paper.

Corresponding authors

Correspondence to Yangyang Li or Guoyin Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Albert Poater and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–162, reaction development, experimental procedures, characterization data and computational details.

Supplementary Data 1

Coordinate files from the computational study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Wu, D., Wei, H. et al. Head–tail carboboration of multisubstituted alkenes enabled by chain recognition. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01903-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing