Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermochemical heterolytic hydrogenation catalysis proceeds through polarization-driven hydride transfer

Abstract

Heterolytic hydrogenations, which split H2 across a hydride acceptor and proton acceptor, comprise a key reaction class that spans the chemical value chain, including CO2 hydrogenation to formate and NADH regeneration from nicotinamide adenine dinucleotide (NAD+). The dominant mechanistic models for heterogeneous catalysis of these reactions invoke classical surface reaction steps, largely ignoring the role of interfacial charge separation. Here we quantify the electrochemical potential of the catalyst during turnover and uncover evidence supporting an interfacial electrochemical hydride transfer mechanism for this overall thermochemical reaction class. We find that the proton acceptor induces spontaneous electrochemical polarization of the metal catalyst surface, thereby controlling the thermodynamic hydricity of the surface M–H intermediates and driving rate-determining electrochemical hydride transfer to the hydride acceptor substrate. This mechanistic framework, which applies across diverse reaction media and for the hydrogenation of CO2 to formate and NAD+ to NADH, enables the determination of intrinsic reaction kinetics and exposes design principles for the future development of sustainable hydrogenation reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneous heterolytic hydrogenation catalysis and proposed mechanistic pathways.
Fig. 2: BIM+ as a model substrate for heterolytic hydrogenation catalysis and mechanistic studies.
Fig. 3: Proposed electrochemical mechanism for heterolytic hydrogenation catalysis of BIM+.
Fig. 4: Evidence for an electrochemical mechanism in thermochemical NADH regeneration.
Fig. 5: Evidence for an electrochemical mechanism in thermochemical CO2 hydrogenation.
Fig. 6: Exchange reaction rates for heterolytic hydrogenation catalysis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the published article (and its Supplementary Information) as .zip files or available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Becker, C. in Encyclopedia of Interfacial Chemistry (ed. Klaus Wandelt) 99–106 (Elsevier, 2018).

  2. Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, 2001).

  3. Álvarez, A. et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 117, 9804–9838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qu, R., Junge, K. & Beller, M. Hydrogenation of carboxylic acids, esters, and related compounds over heterogeneous catalysts: a step toward sustainable and carbon-neutral processes. Chem. Rev. 123, 1103–1165 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Mattson, B. et al. Heterogeneous catalysis: the Horiuti–Polanyi mechanism and alkene hydrogenation. J. Chem. Edu. 90, 613–619 (2013).

    Article  CAS  Google Scholar 

  6. Aireddy, D. R. & Ding, K. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 12, 4707–4723 (2022).

    Article  CAS  Google Scholar 

  7. Wang, X. et al. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2, 621–654 (2017).

    Article  CAS  Google Scholar 

  8. Sun, R. et al. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom. Energy Environ. Sci. 14, 1247–1285 (2021).

    Article  CAS  Google Scholar 

  9. Ryu, J. & Surendranath, Y. Polarization-induced local pH swing promotes Pd-catalyzed CO2 hydrogenation. J. Am. Chem. Soc. 142, 13384–13390 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H.-X., Toh, W. L., Tang, B. Y. & Surendranath, Y. Metal surfaces catalyse polarization-dependent hydride transfer from H2. Nat. Catal. 6, 351–362 (2023).

    Article  Google Scholar 

  11. Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. Spontaneous electric fields play a key role in thermochemical catalysis at metal-liquid interfaces. ACS Cent. Sci. 7, 1045–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wesley, T. S. et al. Metal nanoparticles supported on a nonconductive oxide undergo pH-dependent spontaneous polarization. Chem. Sci. 14, 7154–7160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Popov, B. N. Corrosion Engineering: Principles and Solved Problems (Elsevier, 2015).

  14. Fortunato, G. V. et al. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nat. Commun. 13, 1973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams, J. S., Kromer, M. L., Rodríguez-López, J. & Flaherty, D. W. Unifying concepts in electro- and thermocatalysis toward hydrogen peroxide production. J. Am. Chem. Soc. 143, 7940–7957 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021).

    Article  CAS  Google Scholar 

  17. An, H., Sun, G., Hülsey, M. J., Sautet, P. & Yan, N. Demonstrating the electron–proton-transfer mechanism of aqueous phase 4-nitrophenol hydrogenation using unbiased electrochemical Cells. ACS Catal. 12, 15021–15027 (2022).

    Article  CAS  Google Scholar 

  18. Howland, W. C., Gerken, J. B., Stahl, S. S. & Surendranath, Y. Thermal hydroquinone oxidation on Co/N-doped carbon proceeds by a band-mediated electrochemical mechanism. J. Am. Chem. Soc. 144, 11253–11262 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, X. et al. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603, 271–275 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Lodaya, K. M. et al. An electrochemical approach for designing thermochemical bimetallic nitrate hydrogenation catalysts. Nat. Catal. 7, 262–272 (2024).

    Article  CAS  Google Scholar 

  21. Kunnen, K., Nikonov, G. & Yunnikova, L. in Encyclopedia of Reagents in Organic Synthesis (eds Charette, A. et al.) 1–3 (Wiley, 2014).

  22. Ilic, S., Gesiorski, J. L., Weerasooriya, R. B. & Glusac, K. D. Biomimetic metal-free hydride donor catalysts for CO2 reduction. Acc. Chem. Res. 55, 844–856 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Internet Bond-Energy Databank (Tsinghua Univ., 6 September 2025); https://ibond.las.ac.cn/

  24. van der Plas, J. F., Barendrecht, E. & Zeilmaker, H. Electrocatalytic hydrogenation processes at controlled potential—2. Charge transfer at a slurry electrode. Electrochim. Acta 25, 1471–1475 (1980).

    Article  Google Scholar 

  25. Ilic, S., Alherz, A., Musgrave, C. B. & Glusac, K. D. Thermodynamic and kinetic hydricities of metal-free hydrides. Chem. Soc. Rev. 47, 2809–2836 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Schmickler, W. & Santos, E. Interfacial Electrochemistry (Springer, 2010).

  27. Sellés Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866, 327–347 (2018).

    Article  PubMed  Google Scholar 

  28. Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green Chem. 15, 1773–1789 (2013).

    Article  CAS  Google Scholar 

  29. Wang, X. & Yiu, H. H. P. Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catal. 6, 1880–1886 (2016).

    Article  CAS  Google Scholar 

  30. Saba, T. et al. NADH regeneration: a case study of Pt-catalyzed NAD+ reduction with H2. ACS Catal. 11, 283–289 (2021).

    Article  CAS  Google Scholar 

  31. Wang, M. et al. Chemoselective NADH regeneration: the synergy effect of TiOx and Pt in NAD+ hydrogenation. ACS Sustain.Chem. Eng 9, 6499–6506 (2021).

    Article  CAS  Google Scholar 

  32. Burnett, J. W. H. et al. Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green Chem. 24, 1451–1455 (2022).

    Article  CAS  Google Scholar 

  33. Kurimoto, A. et al. Bioelectrocatalysis with a palladium membrane reactor. Nat. Commun. 14, 1814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Rodkey, F. L. Oxidation-reduction potentials of the diphosphopyridine nucleotide system. J. Biol. Chem. 213, 777–786 (1955).

    Article  CAS  PubMed  Google Scholar 

  36. Brereton, K. R., Smith, N. E., Hazari, N. & Miller, A. J. M. Thermodynamic and kinetic hydricity of transition metal hydrides. Chem. Soc. Rev. 49, 7929–7948 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, A. M. & Miller, A. J. M. Open circuit potential method for thermodynamic hydricity measurements of metal hydrides. Organometallics 43, 3163–3170 (2024).

    Article  CAS  Google Scholar 

  38. Mikolajczyk, T., Luba, M., Pierozynski, B. & Smoczynski, L. A detrimental effect of acetonitrile on the kinetics of underpotentially deposited hydrogen and hydrogen evolution reaction, examined on Pt electrode in H2SO4 and NaOH solutions. Catalysts 10, 625 (2020).

    Article  CAS  Google Scholar 

  39. Lowry, O. H., Passonneau, J. V. & Rock, M. K. The stability of pyridine nucleotides. J. Biol. Chem. 236, 2756–2759 (1961).

    Article  CAS  PubMed  Google Scholar 

  40. Dey, S., Masero, F., Brack, E., Fontecave, M. & Mougel, V. Electrocatalytic metal hydride generation using CPET mediators. Nature 607, 499–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Preiner, M. et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 4, 534–542 (2020).

    Article  PubMed  Google Scholar 

  42. Hudson, R. et al. CO2 reduction driven by a pH gradient. Proc. Natl Acad. Sci. USA 117, 22873–22879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bordet, A. et al. Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support. Nat. Chem. 13, 916–922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu, A. T., Jung, O., Toh, W. L. & Surendranath, Y. Organic non-nucleophilic electrolyte resists carbonation during selective CO2 electroreduction. J. Am. Chem. Soc. 145, 9617–9623 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. DuBois, D. L. & Berning, D. E. Hydricity of transition-metal hydrides and its role in CO2 reduction. Appl. Organomet. Chem. 14, 860–862 (2000).

    Article  CAS  Google Scholar 

  46. Waldie, K. M., Ostericher, A. L., Reineke, M. H., Sasayama, A. F. & Kubiak, C. P. Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018).

    Article  CAS  Google Scholar 

  47. Jin, W. et al. Catalytic upgrading of biomass model compounds: novel approaches and lessons learnt from traditional hydrodeoxygenation—a review. Chem. Cat. Chem. 11, 924–960 (2019).

    CAS  Google Scholar 

  48. Nelson, R. C. et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal. 5, 6509–6523 (2015).

    Article  CAS  Google Scholar 

  49. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Cai, H., Schimmenti, R., Nie, H., Mavrikakis, M. & Chin, Y.-H. C. Mechanistic role of the proton–hydride pair in heteroarene catalytic hydrogenation. ACS Catal. 9, 9418–9437 (2019).

    Article  CAS  Google Scholar 

  51. Bender, M. T., Lam, Y. C., Hammes-Schiffer, S. & Choi, K.-S. Unraveling two pathways for electrochemical alcohol and aldehyde oxidation on NiOOH. J. Am. Chem. Soc. 142, 21538–21547 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Ning, H. et al. Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions. Chem 7, 3069–3084 (2021).

    Article  CAS  Google Scholar 

  53. Mahnaz, F. et al. Intermediate transfer rates and solid-state ion exchange are key factors determining the bifunctionality of In2O3/HZSM-5 tandem CO2 hydrogenation catalyst. ACS Sustain. Chem. Eng 12, 5197–5210 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, F. et al. Electrocatalytic NAD+ reduction via hydrogen atom-coupled electron transfer. Chem. Sci. 13, 13361–13367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the entire Surendranath Laboratory for their support, with particular acknowledgement to T. Wesley, W. L. Toh and B. Y. Tang for fruitful discussion and H. W. Chung, D. Harraz and K. Westendorff for examining the paper. This research was supported by the National Science Foundation, under grant award number CHE-2400167 (Y.S.). H.-X.W. gratefully acknowledges support from the Croucher Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.-X.W. and Y.S. conceived the research and developed experiments. H.-X.W. conducted the experiments. H.-X.W. and Y.S. analysed the data and wrote the paper.

Corresponding author

Correspondence to Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ning Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Discussion and Tables 1–4.

Supplementary Data 1

NMR data for BIM+ hydrogenation.

Supplementary Data 2

Open-circuit potential data for potential sensing experiments.

Supplementary Data 3

Open-circuit potential data and calculated hydricity values.

Supplementary Data 4

Comparison of open-circuit potential data for potential sensing experiments.

Supplementary Data 5

NMR data for BIM+ hydrogenation catalyzed by Pt/SiO2 using D2.

Supplementary Data 6

NMR data for BIM+ hydrogenation catalyzed by Pt/C using D2.

Supplementary Data 7

NMR data for BIM+ hydrogenation catalyzed by Pt/SiO2 using D2 in the absence of HOAc.

Supplementary Data 8

NMR spectral changes for BIM+ hydrogenation using MTBD.

Supplementary Data 9

Time course data and linear fits for BIM+ hydrogenation using various buffers.

Supplementary Data 10

Time course data and linear fits for BIM+ hydrogenation using various acid/base ratios.

Supplementary Data 12

Crude UV–Vis data for NAD+ hydrogenation at various pH values.

Supplementary Data 13

Crude UV–Vis data for NAD+ hydrogenation after treated with lipoamide dehydrogenase.

Supplementary Data 14

NMR data for H/D tracer experiment of NAD+.

Supplementary Data 15

UV–Vis spectral changes for NAD+ hydrogenation.

Supplementary Data 16

Time course data and linear fits for NAD+ hydrogenation.

Supplementary Data 17

Time course data, Tafel data and their linear fits for NAD+ hydrogenation.

Supplementary Data 18

NMR data for CO2 hydrogenation using various bases.

Supplementary Data 19

NMR data for H/D tracer reaction of CO2.

Supplementary Data 20

Time course data and linear fits for CO2 hydrogenation using various bases.

Supplementary Data 21

Time course data and linear fits for CO2 hydrogenation using various acid/base ratios.

Supplementary Data 22

Time course data, Tafel data and their linear fits for CO2 hydrogenation using Rh/C as catalyst.

Supplementary Data 23

Open-circuit potential data and calculated hydricity values for CO2 hydrogenation.

Supplementary Data 24

Open-circuit potential data for CO2 hydrogenation.

Source data

Source Data Fig. 2

Experimental data and linear fits used to plot Fig. 2b–e,g,h.

Source Data Fig. 4

Experimental data and linear fits used to plot Fig. 4c,d.

Source Data Fig. 5

Experimental data and linear fits used to plot Fig. 5c,d.

Source Data Fig. 6

Experimental data, linear fits and extrapolated data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HX., Surendranath, Y. Thermochemical heterolytic hydrogenation catalysis proceeds through polarization-driven hydride transfer. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01939-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing