Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent organic frameworks as infinite building units for metal–organic frameworks with compartmentalized pores

Abstract

Metal–organic frameworks typically rely on discrete molecules as building units, and creating frameworks featuring continuous organic or inorganic subnet moieties, such as chains and layers, is challenging. While all-inorganic subnets have been used as units with infinite connectivity, the intrinsic disorder in organic chains and layers hinders their role as well-defined building blocks for reticular materials. Here we report the one-pot synthesis of a series of Zr6O8-based or Hf6O8-based metal–organic frameworks that feature boroxine-based one-dimensional and two-dimensional covalent organic frameworks—chains with diverse conformations and layers with specific topology, respectively—as the organic components. The spatial compatibility between the constituents locks the infinite organic units into patterned arrangements and thus generates metal–organic frameworks with distinct structural entities and pore environments in separate sections along specific directions. The coexistence of extended covalent organic frameworks and discrete inorganic units, side by side and yet independent of each other, leads to high structural compartmentalization in space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies to construct infinite organic linkers and the resulting MOFs.
Fig. 2: 0D, 1D and 2D organic linkers in MOF-401‒MOF-406.
Fig. 3: Structures of MOF-401‒MOF-406 based on the designed 0D, 1D and 2D organic linkers and the Zr6O8-based SBUs.
Fig. 4: The spatial compatibility between the infinite linkers and the SBUs.
Fig. 5: Adsorption studies of the MOFs.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available in the paper and its Supplementary Information. X-ray crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2416824 (for MOF-401), 2416825 (for MOF-402), 2416826 (for MOF-403), 2416827 (for MOF-404), 2416828 (for MOF-404-oF), 2416829 (for MOF-404-mF), 2416830 (for MOF-405), 2416831 (for MOF-406F), 2457479 (for MOF-401(Hf)), 2457480 (for MOF-403(Hf)), 2457481 (for MOF-404(Hf)) and 2457482 (for MOF-405(Hf)). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry (Wiley-VCH, 2019).

  2. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal‒organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  3. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075b (2015).

    Article  Google Scholar 

  4. Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Yaghi, O. & Li, H. Hydrothermal synthesis of a metal‒organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).

    Article  CAS  Google Scholar 

  7. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  8. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  9. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  PubMed  Google Scholar 

  10. Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. Metal azolate frameworks: from crystal engineering to functional materials. Chem. Rev. 112, 1001–1033 (2011).

    Article  PubMed  Google Scholar 

  11. Li, B. et al. Emerging multifunctional metal–organic framework materials. Adv. Mater. 28, 8819–8860 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Yuan, S. et al. Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30, 1704303 (2018).

    Article  Google Scholar 

  13. Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).

    Article  CAS  Google Scholar 

  14. Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 2006, 4780–4795 (2006).

  15. Serre, C. et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Guillou, N., Livage, C., Beek, W., Noguès, M. & Férey, G. A layered nickel succinate with unprecedented hexanickel units: structure elucidation from powder-diffraction data, and magnetic and sorption properties. Angew. Chem. Int. Ed. 42, 643–647 (2003).

    Article  Google Scholar 

  17. Vaidhayanathan, R., Natarajan, S. & Rao, C. N. R. Aliphatic dicarboxylates with three-dimensional metal–organic frameworks possessing hydrophobic channels. Dalton Trans. 2003, 1459–1464 (2003).

  18. Shyu, E. & LaDuca, R. L. Divalent metal succinate/perchlorate coordination polymers incorporating a kinked hydrogen bonding capable diimine: chains, layers and a (5,6)-connected binodal network featuring alternating rectangular and hexagonal grids. Polyhedron 28, 826–834 (2009).

    Article  CAS  Google Scholar 

  19. Zhang, L. et al. Synthesis, structure, and luminescent properties of hybrid inorganic–organic framework materials formed by lead aromatic carboxylates: inorganic connectivity variation from 0D to 3D. Inorg. Chem. 48, 6517–6525 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Structures of metal‒organic frameworks with rod secondary building units. Chem. Rev. 116, 12466–12535 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Smolders, S. et al. A titanium(IV)-based metal–organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst. Angew. Chem. Int. Ed. 58, 9160–9165 (2019).

    Article  CAS  Google Scholar 

  22. Noa, F. M. A. et al. A unified topology approach to dot-, rod-, and sheet-MOFs. Chem 7, 2491–2512 (2021).

    Article  Google Scholar 

  23. Jia, H., Han, Q., Luo, W., Cong, H. & Deng, H. Sequence control of metals in MOF by coordination number precoding for electrocatalytic oxygen evolution. Chem Catal. 2, 84–101 (2022).

    CAS  Google Scholar 

  24. Sun, C., Xi, R. & Fei, H. Organolead halide-based coordination polymers: intrinsic stability and photophysical applications. Acc. Chem. Res. 56, 452–461 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, W. et al. Metal-halide porous framework superlattices. Nature 638, 418–424 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu, G. K. H., Vaidhyanathan, R. & Taylor, J. M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  PubMed  Google Scholar 

  28. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  Google Scholar 

  29. Han, X. et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han, J. et al. Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction. Science 383, 1014–1019 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Yin, Y. et al. Ultrahigh-surface area covalent organic frameworks for methane adsorption. Science 386, 693–696 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Z. et al. Flux synthesis of two-dimensional covalent organic frameworks. Nat. Protoc. 19, 3489–3519 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, F. et al. Exploring high-connectivity three-dimensional covalent organic frameworks: topologies, structures, and emerging applications. Chem. Soc. Rev. 54, 484–514 (2025).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Y. et al. Integration of metal–organic frameworks and covalent organic frameworks: design, synthesis, and applications. Matter 4, 2230–2265 (2021).

    Article  CAS  Google Scholar 

  36. Lv, S. et al. Metal–coordinated covalent organic frameworks as advanced bifunctional hosts for both sulfur cathodes and lithium anodes in lithium-sulfur batteries. J. Am. Chem. Soc. 146, 9385–9394 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Endo, K. et al. Crystalline porous frameworks based on double extension of metal–organic and covalent organic linkages. Nat. Synth. 4, 603–613 (2025).

    Article  CAS  Google Scholar 

  38. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, Y. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 139, 13166–13172 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, H.-S. et al. A 3D anionic metal covalent organic framework with soc topology built from an octahedral TiIV complex for photocatalytic reactions. Angew. Chem. Int. Ed. 60, 17881–17886 (2021).

    Article  CAS  Google Scholar 

  42. Han, W.-K. et al. Targeted construction of a three-dimensional metal covalent organic framework with spn topology for photocatalytic hydrogen peroxide production. Chem. Eng. J. 449, 137802 (2022).

    Article  CAS  Google Scholar 

  43. Han, W.-K. et al. Integrating light-harvesting ruthenium(II)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 61, e202208791 (2022).

    Article  CAS  Google Scholar 

  44. Koricha, A. L. & Iovine, P. M. Boroxine chemistry and applications: a perspective. Dalton Trans. 39, 1423–1431 (2010).

    Article  Google Scholar 

  45. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Preuss, M. D. et al. Functionalization of supramolecular polymers by dynamic covalent boroxine chemistry. Angew. Chem. Int. Ed. 63, e202402644 (2024).

    Article  CAS  Google Scholar 

  47. Torres-Huerta, A. et al. Structural induction via solvent variation in assemblies of triphenylboroxine and piperazine—potential application as self-assembly molecular sponge. Cryst. Growth Des. 17, 2438–2452 (2017).

    Article  CAS  Google Scholar 

  48. Ono, K. et al. Dynamic interconversion between boroxine cages based on pyridine ligation. Angew. Chem. Int. Ed. 57, 3113–3117 (2018).

    Article  CAS  Google Scholar 

  49. Bhandary, S., Shukla, R. & Hecke, K. V. Effect of chemical substitution on the construction of boroxine-based supramolecular crystalline polymers featuring B←N dative bonds. CrystEngComm 24, 1695–1699 (2022).

    Article  CAS  Google Scholar 

  50. Wang, W. et al. Dative B←N bonds based crystalline organic framework with permanent porosity for acetylene storage and separation. Chem. Sci. 14, 533–539 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Li, Y. et al. Self-healing B←N-based hydrogen-bonded organic framework for exclusive recognition and separation of toluene from methyl-cyclohexane. J. Am. Chem. Soc. 146, 19425–19433 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, J. et al. Visible light-responsive crystalline B←N host adducts with solvent-induced allosteric effect for guest release. Angew. Chem. Int. Ed. 63, e202411880 (2024).

    Article  CAS  Google Scholar 

  53. Kong, X.-J. et al. Constructing new metal–organic frameworks with complicated ligands from “one-pot” in situ reactions. Chem. Sci. 10, 3949–3955 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, W. et al. Reticular synthesis of metal–organic frameworks by 8-connected quadrangular prism ligands for water harvesting. Angew. Chem. Int. Ed. 62, e202305144 (2023).

    Article  CAS  Google Scholar 

  55. Ortín-Rubio, B. et al. A mesoporous Zr-based metal–organic framework driven by the assembly of an octatopic linker. Chem. Commun. 59, 7803–7806 (2023).

    Article  Google Scholar 

  56. Gong, W. et al. Modulator-dependent dynamics synergistically enabled record SO2 uptake in Zr(IV) metal–organic frameworks based on pyrene-cored molecular quadripod ligand. J. Am. Chem. Soc. 145, 26890–26899 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Sheepwash, E. et al. Molecular networks based on dative boron–nitrogen bonds. Angew. Chem. Int. Ed. 50, 3034–3037 (2011).

    Article  CAS  Google Scholar 

  58. Zhao, Z.-H., Li, C.-H. & Zuo, J.-L. Dynamic polymeric materials based on reversible B–O bonds with dative boron-nitrogen coordination. SmartMat 4, e1187 (2023).

    Article  CAS  Google Scholar 

  59. Xiao, X. et al. Formation of polyrotaxane crystals driven by dative boron–nitrogen bonds. Sci. Adv. 9, eadi1169 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, B. & Jäkle, F. Boron-nitrogen Lewis pairs in the assembly of supramolecular macrocycles, molecular cages, polymers, and 3D materials. Angew. Chem. Int. Ed. 63, e202313379 (2024).

    Article  CAS  Google Scholar 

  61. Willems, T. F. et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).

    Article  CAS  Google Scholar 

  62. Walton, K. S. & Snurr, R. Q. Applicability of the BET method for determining surface areas of microporous metal–organic frameworks. J. Am. Chem. Soc. 129, 8552–8556 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, S. et al. A partially interpenetrated metal–organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Haase, F. & Lotsch, B. V. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 49, 8469–8500 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Li, X. et al. An imine-linked metal–organic framework as a reactive oxygen species generator. Angew. Chem. Int. Ed. 60, 2534–2540 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grants 2018YFA0209401 and 2021YFA1500400), the National Natural Science Foundation of China (grants 21922103, 21961132003, 22088101, 22331009 and U22A20401) and the Science and Technology Commission of Shanghai Municipality (grant 2024ZDSYS02). We thank L. Hou, Z. Jiang and Y. Rao for their assistance with the structure refinement and illustration.

Author information

Authors and Affiliations

Authors

Contributions

B.L., H.-L.J. and Q.L. conceived the project. H.-L.J. and Q.L. supervised the project. B.L. designed and performed the syntheses. B.L. and Y.W. performed the structure characterizations and porosity studies. L.W. also performed the syntheses. B.L., Y.W., H.-L.J. and Q.L. wrote the paper. All authors contributed to the data analysis, discussion and revision of the paper.

Corresponding authors

Correspondence to Hai-Long Jiang or Qiaowei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Shuhei Furukawa and Fernando Uribe-Romo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structures of MOF-401‒403.

Single crystal structures of MOF-401 (a) and MOF-402 (c), each depicting one spn net, and the structure of MOF-403 (e). The corresponding linkers, 0D-L1 (b), 0D-L2 (d), and 0D-L3 (f), are highlighted with their cores colored pink. Blue polyhedra represent Zr. Grey, red, and pink spheres represent C/N, O, and B atoms, respectively.

Extended Data Fig. 2 Structures of MOF-404 and MOF-405.

Single crystal structures of MOF-404 (a) and MOF-405 (c), and their corresponding linkers 1D-L1 (b) and 1D-L2 (d). B3O3 and pyridyl rings are colored pink. Blue polyhedra represent Zr. Grey, red, and pink spheres represent C/N, O, and B atoms, respectively.

Extended Data Fig. 3 Structure of MOF-406.

Extended structure of MOF-406 (a) and its corresponding linker 2D-L1 (b). B3O3 and pyridyl rings are colored pink. Blue polyhedra represent Zr. Grey, red, and pink spheres represent C/N, O, and B atoms, respectively.

Extended Data Fig. 4 Pore size and shape illustration of MOF-401‒405.

Interpenetrated MOF-401 (a) and MOF-402 (b) exhibit cylindrical pore channels; MOF-403 (c) contains two interconnected cage types; and each of MOF-404 (d) and MOF-405 (e) features two kinds of prismatic channels.

Supplementary information

Supplementary Information

Supplementary Figs. 1–48, Tables 1–10 and Discussion.

Supplementary Data 1

Source data for Supplementary Fig. 10.

Source data

Source Data Fig. 5

Source data for the adsorption and desorption isotherms in Fig. 5a and the micropore size distribution profiles in Fig. 5b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wu, Y., Wang, L. et al. Covalent organic frameworks as infinite building units for metal–organic frameworks with compartmentalized pores. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01953-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing