Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bottom-up approach to making larger hydrocarbon molecules capable of optical cycling

Abstract

Molecules capable of repeatable, narrow-band spontaneous photon scattering are prized for direct laser cooling and quantum state detection. Recently, large molecules incorporating phenyl rings have been shown to exhibit a high probability of returning to the same vibrational state after photon emission, a behaviour previously observed in small molecules, although it is not yet known if the high vibrational-mode density of even larger species will eventually compromise optical cycling. Here we systematically increase the size of hydrocarbon ligands attached to single alkaline-earth phenoxides from –H to –C14H19 while measuring the vibrational branching fractions of the optical transition. We find that varying the ligand size from one to more than 30 atoms does not systematically reduce the cycle closure, which remains around 90%. Theoretical extensions to larger diamondoids and diamond surfaces suggest that alkaline-earth phenoxides may maintain their desirable scattering behaviour as the system size grows further, with no indication of an upper limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structures of MOPh and derivatives.
Fig. 2: DLIF spectra of the \(\widetilde{A}\to \widetilde{X}\) transitions of SrOPh-x species.
Fig. 3: Theoretical and experimental intensity ratios of observed vibrational decays of all species.
Fig. 4: Summary of measured transition energies and intensity ratios.
Fig. 5: Molecular orbitals of SrOPh-x.

Similar content being viewed by others

Data availability

The datasets and codes for Figs. 25 and Extended Data Figs. 1 and 2 are available from Zenodo via https://doi.org/10.5281/zenodo.14496831. (ref. 72). All other data supporting the findings of this study are available in the Supplementary Information files. Source data are provided with this paper.

References

  1. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  Google Scholar 

  2. Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013).

    Article  CAS  Google Scholar 

  3. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article  CAS  Google Scholar 

  4. Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

    Article  Google Scholar 

  5. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  Google Scholar 

  6. Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    CAS  Google Scholar 

  7. Jain, S. P., Hudson, E. R., Campbell, W. C. & Albert, V. V. Absorption–emission codes for atomic and molecular quantum information platforms. Phys. Rev. Lett. 133, 260601 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Isaev, T. A. & Berger, R. Polyatomic candidates for cooling of molecules with lasers from simple theoretical concepts. Phys. Rev. Lett. 116, 063006 (2016).

    Article  PubMed  Google Scholar 

  9. Kozyryev, I., Baum, L., Matsuda, K. & Doyle, J. M. Proposal for laser cooling of complex polyatomic molecules. ChemPhysChem 17, 3641–3648 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).

    CAS  Google Scholar 

  11. Dickerson, C. E. et al. Franck–Condon tuning of optical cycling centers by organic functionalization. Phys. Rev. Lett. 126, 123002 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Fitch, N & Tarbutt, M. in Advances in Atomic, Molecular, and Optical Physics Vol. 70 (eds Dimauro, L. F. et al.) 157–262 (Elsevier, 2021).

  13. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Augenbraun, B. L. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 72 (eds Dimauro, L. F. et al.) 89–182 (Elsevier, 2023).

  15. Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Shaw, J., Schnaubelt, J. & McCarron, D. Resonance Raman optical cycling for high-fidelity fluorescence detection of molecules. Phys. Rev. Res. 3, L042041 (2021).

    Article  CAS  Google Scholar 

  17. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Vilas, N. B. et al. An optical tweezer array of ultracold polyatomic molecules. Nature https://doi.org/10.1038/s41586-024-07199-1 (2024).

  21. Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Campbell, W. C. & Hudson, E. R. Dipole–phonon quantum logic with trapped polar molecular ions. Phys. Rev. Lett. 125, 120501 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Hudson, E. R. & Campbell, W. C. Laserless quantum gates for electric dipoles in thermal motion. Phys. Rev. A 104, 042605 (2021).

    Article  CAS  Google Scholar 

  25. Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    Article  CAS  Google Scholar 

  26. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article  PubMed  Google Scholar 

  27. Guo, H. et al. Surface chemical trapping of optical cycling centers. Phys. Chem. Chem. Phys. 23, 211–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wolfowicz, G. et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article  CAS  Google Scholar 

  29. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    Article  PubMed  Google Scholar 

  31. Zhelyazkova, V. et al. Laser cooling and slowing of CaF molecules. Phys. Rev. A 89, 053416 (2014).

    Article  Google Scholar 

  32. Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    Article  PubMed  Google Scholar 

  33. Lim, J. et al. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120, 123201 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Albrecht, R., Scharwaechter, M., Sixt, T., Hofer, L. & Langen, T. Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules. Phys. Rev. A 101, 013413 (2020).

    Article  CAS  Google Scholar 

  35. Zhang, Y., Zeng, Z., Liang, Q., Bu, W. & Yan, B. Doppler cooling of buffer-gas-cooled barium monofluoride molecules. Phys. Rev. A 105, 033307 (2022).

    Article  CAS  Google Scholar 

  36. Gu, R. et al. Radiative force from optical cycling on magnesium monofluoride. Phys. Rev. A 105, 042806 (2022).

    Article  CAS  Google Scholar 

  37. Hofsäss, S. et al. Optical cycling of AlF molecules. New J. Phys. 23, 075001 (2021).

    Article  Google Scholar 

  38. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article  PubMed  Google Scholar 

  39. Baum, L. et al. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124, 133201 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Augenbraun, B. L. et al. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys. 22, 022003 (2020).

    Article  CAS  Google Scholar 

  41. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, G.-Z. et al. Functionalizing aromatic compounds with optical cycling centers. Nat. Chem. 14, 995–999 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Lao, G. et al. Laser spectroscopy of aromatic molecules with optical cycling centers: strontium(I) phenoxides. J. Phys. Chem. Lett. 13, 11029–11035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitra, D. et al. Pathway towards optical cycling and laser cooling of functionalized arenes. J. Phys. Chem. Lett. 13, 7029–7035 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Augenbraun, B. L., Burchesky, S., Winnicki, A. & Doyle, J. M. High-resolution laser spectroscopy of a functionalized aromatic molecule. J. Phys. Chem. Lett. 13, 10771–10777 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Dickerson, C. E., Chang, C., Guo, H. & Alexandrova, A. N. Fully saturated hydrocarbons as hosts of optical cycling centers. J. Phys. Chem. A 126, 9644–9650 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ivanov, M. V., Bangerter, F. H. & Krylov, A. I. Towards a rational design of laser-coolable molecules: insights from equation-of-motion coupled-cluster calculations. Phys. Chem. Chem. Phys. 21, 19447–19457 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Ivanov, M. V., Gulania, S. & Krylov, A. I. Two cycling centers in one molecule: communication by through-bond interactions and entanglement of the unpaired electrons. J. Phys. Chem. Lett. 11, 1297–1304 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ivanov, M. V., Bangerter, F. H., Wójcik, P. & Krylov, A. I. Toward ultracold organic chemistry: prospects of laser cooling large organic molecules. J. Phys. Chem. Lett. 11, 6670–6676 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Dickerson, C. E. et al. Optical cycling functionalization of arenes. J. Phys. Chem. Lett. 12, 3989–3995 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Kłos, J. & Kotochigova, S. Prospects for laser cooling of polyatomic molecules with increasing complexity. Phys. Rev. Res. 2, 013384 (2020).

    Article  Google Scholar 

  52. Zhang, C., Hutzler, N. R. & Cheng, L. Intensity-borrowing mechanisms pertinent to laser cooling of linear polyatomic molecules. J. Chem. Theory Comput. 19, 4136–4148 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, G.-Z. et al. Extending the large molecule limit: the role of Fermi resonance in developing a quantum functional group. J. Phys. Chem. Lett. 15, 590–597 (2024).

    Article  PubMed  Google Scholar 

  54. Boyer, M. A. & McCoy, A. B. PyVibPTn, a general package for vibrational perturbation theory. Zenodo https://doi.org/10.5281/zenodo.5563091 (2021).

  55. Boyer, M. A. & McCoy, A. B. A flexible approach to vibrational perturbation theory using sparse matrix methods. J. Chem. Phys. 156, 054107 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Boyer, M. A. & McCoy, A. B. A wave function correction-based approach to the identification of resonances for vibrational perturbation theory. J. Chem. Phys. 157, 164113 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Elliott, M. C., Hughes, C. E., Knowles, P. J. & Ward, B. D. Alkyl groups in organic molecules are not inductively electron-releasing. Org. Biomol. Chem. 23, 352–359 (2025).

    Article  CAS  PubMed  Google Scholar 

  58. Lavroff, R. H. et al. Aperiodic defects in periodic solids. J. Chem. Phys. 63, 08405 (2025).

    Google Scholar 

  59. Angeli, C., Pastore, M. & Cimiraglia, R. New perspectives in multireference perturbation theory: the n-electron valence state approach. Theor. Chem. Acc. 117, 743–754 (2007).

    Article  CAS  Google Scholar 

  60. Campbell, W. C. & Augenbraun, B. L. Photon spin molasses for laser cooling molecular rotation. J. Mol. Spectrosc. 385, 111596 (2022).

    Article  CAS  Google Scholar 

  61. Reitz, M., Sommer, C. & Genes, C. Cooperative quantum phenomena in light–matter platforms. PRX Quantum 3, 010201 (2022).

    Article  Google Scholar 

  62. Trebbia, J.-B., Deplano, Q., Tamarat, P. & Lounis, B. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters. Nat. commun. 13, 2962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Szunerits, S. & Boukherroub, R. Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12, 1205–1218 (2008).

    Article  CAS  Google Scholar 

  64. Raymakers, J., Haenen, K. & Maes, W. Diamond surface functionalization: from gemstone to photoelectrochemical applications. J. Mater. Chem. C 7, 10134–10165 (2019).

    Article  CAS  Google Scholar 

  65. Zhuo, F., Bing-Bing, S., Hui-Xian, H. & An-Yang, L. High-precision electron structure calculation of the CaSH molecule and theoretical analysis on using it as the target molecule of laser cooling. Acta Phys. Sin. 73, 023301 (2024).

    Article  Google Scholar 

  66. Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian, 2016).

  67. Bernath, P. F. & Brazier, C. R. Spectroscopy of CaOH. Astrophys. J. 288, 373–376 (1985).

    Article  CAS  Google Scholar 

  68. Brazier, C. R. & Bernath, P. F. Observation of gas phase organometallic free radicals: monomethyl derivatives of calcium and strontium. J. Chem. Phys. 86, 5918–5922 (1987).

    Article  CAS  Google Scholar 

  69. Wormsbecher, R. & Suenram, R. Laser spectroscopy and chemiluminescence from the monomethoxides of Ca, Sr, and Ba. J. Mol. Spectrosc. 95, 391–404 (1982).

    Article  CAS  Google Scholar 

  70. Brazier, C. R., Ellingboe, L. C., Kinsey-Nielsen, S. & Bernath, P. F. Laser spectroscopy of alkaline earth monoalkoxide free radicals. J. Am. Chem. Soc. 108, 2126–2132 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. Crozet, P. et al. The A2E–X2A1 system of CaOCH3. J. Mol. Spectrosc. 213, 28–34 (2002).

    Article  CAS  Google Scholar 

  72. Lao, G. et al. Bottom-up approach to scalable growth of molecules capable of optical cycling. Zenodo https://doi.org/10.5281/zenodo.14496831 (2025).

Download references

Acknowledgements

This work was supported by the NSF Center for Chemical Innovation Phase I (grant number CHE-2221453, A.A., E.R.H.), AFOSR (grant number FA9550-20-1-0323, E.R.H., W.C.C.), the NSF (grant numbers OMA-2016245, W.C.C., E.R.H.; PHY-2207985, W.C.C.; and DGE-2034835). This research is funded in part by the Gordon and Betty Moore Foundation (DOI: 10.37807/GBMF11566, W.C.C.). Computational resources were provided by XSEDE and UCLA IDRE shared cluster hoffman2. The authors acknowledge computational resources from the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Contributions

G.-Z.Z. and G.L. constructed the spectroscopy apparatus. G.-Z.Z. drafted the paper, G.L., T.K., W.C.C. and A.M. contributed to the writing of the paper. G.-Z.Z., G.L., H.Z., T.K. and A.M. acquired the experimental data. T.K., H.W.T.M., R.H.L., R.C. and D.U. performed the calculations. G.-Z.Z., G.L., T.K. and A.M. analysed the data. H.Z., T.K. and A.M. contributed to the data analysis. A.M. developed the synthesis and contributed to the species production. A.N.A., W.C.C. and G.-Z.Z. conceived the idea. W.C.C., E.R.H., G.-Z.Z. and M.A.G.-G. coordinated the experimental research. A.N.A. coordinated the theoretical research.

Corresponding authors

Correspondence to Guo-Zhu Zhu, Miguel A. García-Garibay, Anastassia N. Alexandrova, Eric R. Hudson or Wesley C. Campbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Michael C. Heaven and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dispersed spectra of the \(\widetilde{B}\to \widetilde{X}\) transitions of SrOPh-x.

a, SrOPh-CH3. b,SrOPh-\({\rm{C}}{({{\rm{CH}}}_{3})}_{3}\). c, SrOPh-Ad. d, SrOPh-1diA. e, SrOPh-4diA. The black curves and red dashed curves show the experimental spectra and the Voigt profile fits, respectively. The blue sticks indicate the theoretical predictions of the intensity ratios and harmonic frequencies of the vibrational decays. The two cyan dashed sticks near -200 cm−1 in a represent the vibrational perturbation theory calculation of the Fermi resonance coupling between the fundamental mode ν5 and the combination mode ν2 + ν4. The lines labeled with the + signs correspond to the strontium atomic lines. The vibrational decays are labeled with notation \({n}_{i}^{j}\), where n denotes the vibrational mode νn, i and j are the vibrational quantum numbers in the ground and excited states, respectively. ‘+’ labels denote strontium atomic lines produced from laser ablation of SrH2.

Source data

Extended Data Fig. 2 Dispersed spectra of the \(\widetilde{A}/\widetilde{B}\to \widetilde{X}\) transitions of CaOPh-x species.

a-b, CaOPh-CH3. c-d, CaOPh-\({\rm{C}}{({{\rm{CH}}}_{3})}_{3}\). e-f, CaOPh-Ad. g-h, CaOPh-1diA. i-j, CaOPh-4diA. The black curves and red dashed curves show the experimental spectra and the Voigt profile fits, respectively. The blue sticks indicate the theoretical predictions of the intensity ratios and harmonic frequencies of the vibrational decays. The vibrational decays are labeled with notation \({n}_{i}^{j}\), where n represents the vibrational mode νn, i and j are the vibrational quantum numbers in the ground and excited states, respectively. * indicates the calcium atomic lines induced by the laser ablation of the calcium/CaH2 targets.

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–14 and Figs. 1–19.

Source data

Source Data Fig. 2

Datasets of dispersed spectra of all molecules and MATLAB codes. Source Data Extended Data Fig. 1 Datasets of dispersed spectra of all molecules and MATLAB codes. Source Data Extended Data Fig. 2 Datasets of dispersed spectra of all molecules and MATLAB codes.

Source Data Fig. 3

Data and MATLAB codes.

Source Data Fig. 4

Data and MATLAB codes.

Source Data Fig. 5

Data and MATLAB codes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, G., Khvorost, T., Macias, A. et al. Bottom-up approach to making larger hydrocarbon molecules capable of optical cycling. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01965-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing