Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioconvergent radical addition of racemic alkyl halides to access vicinal stereocentres

Abstract

The development of synthetic methods that convert readily accessible chemicals into highly valuable small organic molecules, especially those with enantioenriched three-dimensional structures, holds substantial importance in organic synthesis. Alkyl halides are pivotal substrates for generating chiral C(sp3)–C(sp3) bonds. However, constructing modular vicinal stereogenic carbon centres from racemic alkyl halides, especially those bearing the sterically bulky quaternary carbon stereocentres frequently found in natural products, remains a daunting challenge. Here we report cobalt-catalysed enantioconvergent reductive addition of racemic alkyl halides with imines, allowing for efficient construction of various contiguous stereogenic centres, including tertiary–tertiary, tertiary–quaternary and quaternary–quaternary stereocentres with high diastereo- and enantioselectivities. The mild reaction conditions circumvent the use of organometallic reagents, ensuring broad functional group compatibility and enabling the formation of valuable chiral organic motifs such as amino acids, organophosphorus compounds, amino alcohols and γ-lactams. This reductive radical addition protocol also enables the stereoselective construction of C-glycosyl amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of enantioconvergent reductive addition with racemic alkyl halides.
Fig. 2: Synthetic applications.

Similar content being viewed by others

Data availability

Crystallographic data for compounds 5, 33, 42, 78, 89, 98, 102 and 124 are available from the Cambridge Crystallographic Data Center under reference numbers CCDC 2267486, 2339703, 2281055, 2347928, 2345237, 2348348, 2348347 and 2339794, respectively. All other data to support the conclusions are available in the main text or the supplementary materials.

References

  1. Corey, E. J. & Kürti, L. Enantioselective Chemical Synthesis: Methods, Logic and Practice (Direct Book, 2010).

  2. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  3. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  5. Yus, M., Nájera, C., Foubelo, F. & Sansano, J. M. Metal-catalyzed enantioconvergent transformations. Chem. Rev. 123, 11817–11893 (2023).

    Article  PubMed Central  CAS  Google Scholar 

  6. Fischer, C. & Fu, G. C. Asymmetric nickel-catalyzed Negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc. 127, 4594–4595 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Mao, J. et al. Cobalt-bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic α-bromo esters with aryl Grignard reagents. J. Am. Chem. Soc. 136, 17662–17668 (2014).

    Article  PubMed  CAS  Google Scholar 

  8. Jiang, S.-P. et al. Copper-catalyzed enantioconvergent radical Suzuki–Miyaura C(sp3)–C(sp2) cross-coupling. J. Am. Chem. Soc. 142, 19652–19659 (2020).

    Article  CAS  Google Scholar 

  9. Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949–957 (2022).

    Article  PubMed  CAS  Google Scholar 

  10. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Catalytic asymmetric reductive acyl cross-coupling: synthesis of enantioenriched acyclic α,α-disubstituted ketones. J. Am. Chem. Soc. 135, 7442–7445 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhao, W.-T. & Shu, W. Enantioselective Csp3–Csp3 formation by nickel-catalyzed enantioconvergent cross-electrophile alkyl–alkyl coupling of unactivated alkyl halides. Sci. Adv. 9, eadg9898 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. An, L., Tong, F.-F., Zhang, S. & Zhang, X. Stereoselective functionalization of racemic cyclopropylzinc reagents via enantiodivergent relay coupling. J. Am. Chem. Soc. 142, 11884–11892 (2020).

    Article  PubMed  CAS  Google Scholar 

  15. Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pierrot, D. & Marek, I. Synthesis of enantioenriched vicinal tertiary and quaternary carbon stereogenic centers within an acyclic chain. Angew. Chem. Int. Ed. 59, 36–49 (2020).

    Article  CAS  Google Scholar 

  17. Tian, Q. & Zhang, G. Recent advances in the asymmetric Nozaki–Hiyama–Kishi reaction. Synthesis 48, 4038–4049 (2016).

    Article  CAS  Google Scholar 

  18. Gil, A., Albericio, F. & Álvarez, M. Role of the Nozaki–Hiyama–Takai–Kishi reaction in the synthesis of natural products. Chem. Rev. 117, 8420–8446 (2017).

    Article  PubMed  CAS  Google Scholar 

  19. Bandini, M., Cozzi, P. G. & Umani-Ronchi, A. Salen as a chiral activator: anti versus syn switchable diastereoselection in the enantioselective addition of crotyl bromide to aromatic aldehydes. Angew. Chem. Int. Ed. 39, 2327–2330 (2000).

    Article  CAS  Google Scholar 

  20. Kurosu, M., Lin, M.-H. & Kishi, Y. Fe/Cr- and Co/Cr-mediated catalytic asymmetric 2-haloallylations of aldehydes. J. Am. Chem. Soc. 126, 12248–12249 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Zhang, S. et al. Design and synthesis of tunable chiral 2,2′-bipyridine ligands: application to the enantioselective nickel-catalyzed reductive arylation of aldehydes. Angew. Chem. Int. Ed. 61, e202117843 (2022).

    Article  CAS  Google Scholar 

  22. Zhu, Z., Xiao, J., Li, M. & Shi, Z. Nickel-catalyzed intermolecular asymmetric addition of aryl iodides across aldehydes. Angew. Chem. Int. Ed. 61, e202201370 (2022).

    Article  CAS  Google Scholar 

  23. Jiang, X. et al. Photoassisted cobalt-catalyzed asymmetric reductive Grignard-type addition of aryl iodides. J. Am. Chem. Soc. 144, 8347–8354 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, L. et al. Nickel-catalyzed enantioselective reductive arylation and heteroarylation of aldimines via an elementary 1,4-addition. J. Am. Chem. Soc. 145, 8498–8509 (2023).

    Article  CAS  Google Scholar 

  25. Liang, T. et al. Visible light-mediated cobalt and photoredox dual-catalyzed asymmetric reductive coupling for axially chiral secondary alcohols. Chin. J. Chem. 41, 3253–3260 (2023).

    Article  CAS  Google Scholar 

  26. Kumar, R., Flodén, N. J., Whitehurst, W. G. & Gaunt, M. J. A general carbonyl alkylative amination for tertiary amine synthesis. Nature 581, 415–420 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Turro, R. F., Brandstätter, M. & Reisman, S. E. Nickel-catalyzed reductive alkylation of heteroaryl imines. Angew. Chem. Int. Ed. 61, e202207597 (2022).

    Article  CAS  Google Scholar 

  28. Wu, X. et al. Modular α-tertiary amino ester synthesis through cobalt-catalysed asymmetric aza-Barbier reaction. Nat. Chem. 16, 398–407 (2024).

    Article  PubMed  CAS  Google Scholar 

  29. Gao, Y. et al. Electrocatalytic asymmetric Nozaki–Hiyama–Kishi decarboxylative coupling: scope, applications, and mechanism. J. Am. Chem. Soc. 146, 4872–4882 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shibasaki, M. & Kanai, M. Asymmetric synthesis of tertiary alcohols and α-tertiary amines via Cu-catalyzed C–C bond formation to ketones and ketimines. Chem. Rev. 108, 2853–2873 (2008).

    Article  CAS  Google Scholar 

  31. Ruan, L.-X., Sun, B., Liu, J.-M. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).

    Article  CAS  Google Scholar 

  32. Subramanian, H., Landais, Y. & Sibi, M. P. in Comprehensive Organic Synthesis Vol. II (eds Knochel, P. & Molander, G. A.) 699–741 (Elsevier, 2014).

  33. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  PubMed  CAS  Google Scholar 

  34. Pitzer, L., Schwarz, J. L. & Glorius, F. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 10, 8285–8291 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. He, X.-K. et al. Desymmetrization–addition reaction of cyclopropenes to imines via synergistic photoredox and cobalt catalysis. J. Am. Chem. Soc. 146, 18892–18898 (2024).

    Article  CAS  Google Scholar 

  36. Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat. Catal. 2, 1016–1026 (2019).

    Article  CAS  Google Scholar 

  37. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hou, L. et al. Enantioselective radical addition to ketones through Lewis acid-enabled photoredox catalysis. J. Am. Chem. Soc. 144, 22140–22149 (2022).

    Article  PubMed  CAS  Google Scholar 

  40. Song, X. et al. Catalytic asymmetric synthesis of azaarene-functionalized tertiary amines and α-amino acid derivatives from E/Z-ketimine mixtures via enantioselective radical coupling. ACS Catal. 13, 6396–6402 (2023).

    Article  CAS  Google Scholar 

  41. Gosmini, C. & Auffrant, A. in Patai’s Chemistry of Functional Groups (Wiley, 2022).

  42. Presset, M. et al. CoI-catalyzed Barbier reactions of aromatic halides with aromatic aldehydes and imines. Chem. Eur. J. 49, 4491–4495 (2019).

    Article  Google Scholar 

  43. Li, Y. et al. Cobalt-catalysed enantioselective C(sp3)–C(sp3) coupling. Nat. Catal. 4, 901–911 (2021).

    Article  CAS  Google Scholar 

  44. Zhou, F. et al. Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chem. Sci. 11, 9341–9365 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nugent, T. C. (ed.) Chiral Amine Synthesis: Methods, Developments and Applications (Wiley-VCH, 2010).

  46. Blaskovich, M. A. T. Unusual amino acids in medicinal chemistry. J. Med. Chem. 59, 10807–10836 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Wu, L. et al. Anionic bisoxazoline ligands enable copper-catalyzed asymmetric radical azidation of acrylamides. Angew. Chem. Int. Ed. 60, 6997–7001 (2021).

    Article  CAS  Google Scholar 

  48. Chen, J.-J. et al. Enantioconvergent Cu-catalysed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    Article  PubMed  CAS  Google Scholar 

  49. Li, P. et al. Stereodivergent access to non-natural α-amino acids via enantio- and Z/E-selective catalysis. Science 385, 972–979 (2024).

    Article  PubMed  CAS  Google Scholar 

  50. Kolodiazhnyi, O. I., Kukhar, V. P. & Kolodiazhna, A. O. Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds. Tetrahedron Asymmetry 25, 865–922 (2014).

    Article  CAS  Google Scholar 

  51. Ye, L.-W., Shu, C. & Gagosz, F. Recent progress towards transition metal-catalyzed synthesis of γ-lactams. Org. Biomol. Chem. 12, 1833–1845 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Dondoni, A. & Marra, A. Methods for anomeric carbon-linked and fused sugar amino acid synthesis: the gateway to artificial glycopeptides. Chem. Rev. 100, 4395–4422 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. Ghorai, S., Chirke, S. S., Xu, W.-B., Chen, J.-F. & Li, C. Cobalt-catalyzed regio- and enantioselective allylic amination. J. Am. Chem. Soc. 141, 11430–11434 (2019).

    Article  PubMed  CAS  Google Scholar 

  54. Chen, A., Yang, B., Zhou, Z. & Zhu, F. Recent advances in transition-metal-catalyzed glycosyl cross-coupling reactions. Chem. Catal. 2, 3430–3470 (2022).

    CAS  Google Scholar 

  55. Shang, W., Shi, R. & Niu, D. C-glycoside synthesis enabled by nickel catalysis. Chin. J. Chem. 41, 2217–2236 (2023).

    Article  CAS  Google Scholar 

  56. Wu, K. J. Y. et al. An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance. Science 383, 721–726 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Shang, M. et al. Modular, stereocontrolled Cβ–H/Cα–C activation of alkyl carboxylic acids. Proc. Natl Acad. Sci. USA 116, 8721–8727 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR and high-resolution mass spectrometry analysis. This work was supported by the National Natural Science Foundation of China (22171079, 22371071, 92356301, T2488302, 22471191, 2240011806), the Science and Technology Commission of Shanghai Municipality (grant number 24DX1400200), the Program of Introducing Talents of Discipline to Universities (B16017), the Scientific Committee of Shanghai (21JC1401700), the Shanghai Sailing Program (23YF1408800) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. conceived of the project. X.W., T.X., J.B., C.F., J.H., W.W., C.Z. and Q.W. performed the experiments under the supervision of J.Q. and Y.C. Y.S. performed DFT calculations under the supervision of G.H. X.W., G.H. and Y.C. wrote the paper with feedback from all the other authors.

Corresponding authors

Correspondence to Genping Huang or Yifeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental mechanistic studies.

a, Radical clock experiment. b, Tracking the enantiopurity of the secondary α-chloroamides. c, Stereodivergent synthesis of 3. Standard condition: 1a (1.0 equiv.), 2 (1.5 equiv.), CoI2 (5 mol%), L4 (6 mol%), In (2.0 equiv.), EtOH (1.0 equiv.) in MeCN/THF (v/v = 1/1, 0.2 M) under 35 °C for 48 h. Isolated yields were reported, the e.e. was determined by chiral HPLC analysis and d.r. was determined by crude NMR.

Extended Data Fig. 2 DFT Calculations and proposed catalytic cycle.

a, C-Cl bond cleavage using IM1triplet as the active catalyst species. b, C-Cl bond cleavage and C-C bond formation using IM3d°ublet as the active catalyst species. c, Proposed catalytic cycle. The Gibbs free energies were computed at the level of (u)ωB97X-D4(SMD)/ZORA-def2-TZVPP//(u)BP86(SMD)/6-31 G(d)&SDD. R and S denote the stereochemical configuration of the product.

Extended Data Fig. 3 Origins of Stereoselectivity.

a, Optimized geometries and non-covalent interaction analysis of radical addition transition states. b, Structural analysis of IM1triplet. c, Distortion/interaction analysis of radical addition transition states. ΔEint: interaction energy, ΔEdist[2a’]: distortion energy of 2a’, ΔEdist[IM1triplet]: distortion energy of IM1triplet.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Tables 1–8.

Supplementary Data 1

Cartesian coordinates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Xia, T., Bai, J. et al. Enantioconvergent radical addition of racemic alkyl halides to access vicinal stereocentres. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01967-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01967-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing