Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Core diversification using 1,2-oxaborines as a versatile molecular platform

Abstract

In drug discovery processes, changing the core structures of lead compounds to a variety of other ring systems is often needed, which typically requires laborious de novo syntheses of individual analogues. Here we report a conceptually different approach that allows rapid access to diverse core structures from a common intermediate using 1,2-oxaborines as a versatile molecular platform. A soft enolization/6π-electrocyclization strategy has been developed to efficiently synthesize 1,2-oxaborines from readily available enones or enals. Taking advantage of their multifaceted reactivities, 1,2-oxaborines can undergo further C−H functionalization and be transformed into a diverse range of arenes, heteroarenes and non-aromatic heterocycles. Finally, late-stage preparations of a suite of analogues that contain Lipitor substituents but with different aromatic cores are demonstrated using the 1,2-oxaborine-based core diversification strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core diversification using 1,2-oxaborines as a versatile platform.
Fig. 2: Reaction design and discovery.
Fig. 3: Functionalization of 1,2-oxaborines.
Fig. 4: General demonstration of core diversification from 1,2-oxaborines.
Fig. 5: Core diversification of analogues that contain Lipitor substituents.

Similar content being viewed by others

Data availability

All the data generated or analysed during this study are included in this Article and its Supplementary Information. Crystallographic data for the structure of 3ja reported in this study has been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2409545. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Hu, Y. & Bajorath, J. Many drugs contain unique scaffolds with varying structural relationships to scaffolds of currently available bioactive compounds. Eur. J. Med. Chem. 76, 427–434 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kombarov, R. et al. BioCores: identification of a drug/natural product-based privileged structural motif for small-molecule lead discovery. Mol. Divers. 14, 193–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Catapano, A. L. Pitavastatin: a different pharmacological profile. Clin. Lipidol. 7, 3–9 (2012).

    Article  CAS  Google Scholar 

  4. Turner, N. A., Midgley, L., O’Regan, D. J. & Porter, K. E. Comparison of the efficacies of five different statins on inhibition of human saphenous vein smooth muscle cell proliferation and invasion. J. Cardiovasc. Pharmacol. 50, 458–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yamada, K., Matsuki, K., Omori, K., & Kikkawa, K. Cyclic compounds. WO Patent 2001083460A1 (2001).

  6. Yamada, K., Sakamoto, T., Omori, K. & Kikkawa, K. Successful Drug Discovery (eds Fischer, J. & Rotella, D.) 71–76 (Wiley, 2015).

  7. Li, E.-Q., Lindsley, C. W., Chang, J. B. & Yu, B. Molecular skeleton editing for new drug discovery. J. Med. Chem. 67, 13509–13511 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Joynson, B. W. & Ball, L. T. Skeletal editing: interconversion of arenes and heteroarenes. Helv. Chim. Acta 106, e202200182 (2023).

    Article  CAS  Google Scholar 

  9. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Z., Sivaguru, P., Ning, Y., Wu, Y. & Bi, X. Skeletal editing of (hetero)arenes using carbenes. Chem. Eur. J. 29, e202301227 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, Q. et al. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat. Chem. 16, 741–748 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, F.-P. et al. Ring expansion of indene by photoredox-enabled functionalized carbon-atom insertion. Nat. Catal. 7, 242–251 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finkelstein, P. et al. Nitrogen atom insertion into indenes to access isoquinolines. Chem. Sci. 14, 2954–2959 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. et al. C-F bond insertion into indoles with CHBr2F: an efficient method to synthesize fluorinated quinolines and quinolones. Chin. J. Chem. 42, 1128–1132 (2024).

    Article  CAS  Google Scholar 

  15. Roure, B. et al. Photochemical permutation of thiazoles, isothiazoles and other azoles. Nature 637, 860–867 (2025).

    Article  CAS  PubMed  Google Scholar 

  16. McConnell, C. R. & Liu, S.-Y. Late-stage functionalization of BN-heterocycles. Chem. Soc. Rev. 48, 3436–3453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giustra, Z. X. & Liu, S.-Y. The state of the art in azaborine chemistry: new synthetic methods and applications. J. Am. Chem. Soc. 140, 1184–1194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campbell, P. G., Marwitz, A. J. V. & Liu, S.-Y. Recent advances in azaborine chemistry. Angew. Chem. Int. Ed. 51, 6074–6092 (2012).

    Article  CAS  Google Scholar 

  19. Su, W. L. et al. Copper-catalysed asymmetric hydroboration of alkenes with 1,2-benzazaborines to access chiral naphthalene isosteres. Nat. Chem. 16, 1312–1319 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, P., Nettleton, D. O., Karki, R. G., Zécri, F. J. & Liu, S.-Y. Medicinal chemistry profiling of monocyclic 1,2-azaborines. ChemMedChem 12, 358–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, M. et al. A BN-doped cycloparaphenylene debuts. Angew. Chem. Int. Ed. 60, 1556–1560 (2021).

    Article  CAS  Google Scholar 

  22. Chen, J. H., Bajko, Z., Kampf, J. W. & Ashe, A. J. III Organometallics 26, 1563–1564 (2007).

    Article  CAS  Google Scholar 

  23. Yruegas, S., Pattersona, D. C. & Martin, C. D. Oxygen insertion into boroles as a route to 1,2-oxaborines. Chem. Commun. 52, 6658–6661 (2016).

    Article  CAS  Google Scholar 

  24. Nava, N. A. 1,2-Oxaborines: Synthesis, Properties, and Reactivity. Master’s Thesis, Boston College (2017).

  25. Köster, R. & Pourzal, A.-A. Kondensationsprodukte von alkyl-phenylketonen. Synthesis 11, 674–676 (1973).

    Article  Google Scholar 

  26. Lyu, H. et al. Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation. Nat. Chem. 16, 269–276 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Choi, S. & Dong, G. Rapid and modular access to multifunctionalized 1,2-azaborines via palladium/norbornene cooperative catalysis. J. Am. Chem. Soc. 146, 9512–9518 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Casey, C. P., Jones, C. R. & Tukada, H. Interconversion of γ-siIyl α,β-unsaturated carbonyl compounds and siloxybutadienes by 1,5-shifts of silicon between carbon and oxygen. J. Org. Chem. 46, 2089–2092 (1981).

    Article  CAS  Google Scholar 

  29. Braun, M. Modern Aldol Reactions (ed. Mahrwald, R.) 1–61 (Wiley, 2004).

  30. Baggett, A. W., Vasiliu, M., Li, B., Dixon, D. A. & Liu, S.-Y. Late-stage functionalization of 1,2-dihydro-1,2-azaborines via regioselective iridium-catalyzed C–H borylation: the development of a new N,N-bidentate ligand scaffold. J. Am. Chem. Soc. 137, 5536–5541 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Pan, J., Kampf, J. W. & Ashe, A. J. Electrophilic aromatic substitution reactions of 1,2-dihydro-1,2-azaborines. Org. Lett. 9, 679–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, A. N., Li, B. & Liu, S.-Y. Negishi cross-coupling is compatible with a reactive B–Cl bond: development of a versatile late stage functionalization of 1,2-azaborines and its application to the synthesis of new BN isosteres of naphthalene and indenyl. J. Am. Chem. Soc. 137, 8932–8935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown, A. N., Li, B. & Liu, S.-Y. Expanding the functional group tolerance of cross-coupling in 1,2-dihydro-1,2-azaborines: installation of alkyl, alkenyl, aryl, and heteroaryl substituents while maintaining a B–H bond. Tetrahedron 75, 580–583 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki, M., Hamzik, P. J., Ikemoto, H., Bartko, S. G. & Danheiser, R. L. Formal bimolecular [2 + 2 + 2] cycloaddition strategy for the synthesis of pyridines: intramolecular propargylic Ene reaction/Aza Diels–Alder reaction cascades. Org. Lett. 20, 6244–6249 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J. J., Pollock, G. R., Mitchell, D., Kasuga, L. & Kraus, G. A. Upgrading malic acid to bio-based benzoates via a Diels–Alder-initiated sequence with the methyl coumalate platform. RSC Adv. 4, 45657–45664 (2014).

    Article  CAS  Google Scholar 

  36. Liu, J. et al. Photoredox-enabled chromium-catalyzed alkene diacylations. ACS Catal. 12, 1879–1885 (2022).

    Article  CAS  Google Scholar 

  37. Üsküp, H. C., Yıldız, T., Onar, H. Ç & Hasdemir, B. Synthesis of novel 1,4-diketone derivatives and their further cyclization. ACS Omega 8, 14047–14052 (2023).

    Article  Google Scholar 

  38. Thilagavathi, R. et al. Three-dimensional quantitative structure (3-D QSAR) activity relationship studies on imidazolyl and N-pyrrolyl heptenoates as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitors by comparative molecular similarity indices analysis (CoMSIA). Bioorg. Med. Chem. Lett. 15, 1027–1032 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Sakaguchi, H. et al. Copper-catalyzed regioselective monodefluoroborylation of polyfluoroalkenes en route to diverse fluoroalkenes. J. Am. Chem. Soc. 139, 12855–12862 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The University of Chicago is acknowledged for research support. We thank A. S. Filatov (University of Chicago) and X. Liu (University of Chicago) for X-ray crystallography. K. Wen (University of Chicago) is thanked for checking the experimental procedure.

Author information

Authors and Affiliations

Authors

Contributions

G.D. and Y.G. conceived and designed the experiments. Y.G., Q.Z and Y.Z. performed the experiments and analysed the data. Y.G. and G.D. prepared the paper together. G.D. directed the research.

Corresponding author

Correspondence to Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Adam Noble, Qiuling Song and Tülay Yıldız for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, discussion and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Zhu, Q., Zhu, Y. et al. Core diversification using 1,2-oxaborines as a versatile molecular platform. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01971-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01971-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing