Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contra-electronegativity transmetallation unlocks alkene carbomagnesiation to access quaternary stereocentres

Abstract

Grignard reagents—cornerstones of synthetic chemistry—are hindered by enduring limitations in accessing complex architectures, which poses a persistent synthetic bottleneck. Meanwhile, quaternary carbon (stereo)centres, ubiquitous in bioactive molecules and natural products, remain formidable synthetic targets despite decades of research. Here we introduce a nickel-catalysed carbomagnesiation strategy that simultaneously overcomes these challenges through a rare contra-electronegativity transmetallation (Ni to Mg). This approach enables the efficient and modular synthesis of β-quaternary Grignard reagents via carbomagnesiation of 1,1-disubstituted alkenes and 1,3-dienes, employing aryl triflate and PhMgBr as carbon and magnesium sources, respectively. The resulting organomagnesium reagents undergo one-pot reactions with diverse electrophiles, delivering stereochemically complex quaternary centres with high precision. Mechanistically, bulky N-heterocyclic carbene (NHC)-based catalysts divert classical cross-coupling pathways, enforcing a counterintuitive Ni-to-Mg transmetallation that defies conventional electronegativity trends while achieving exceptional regio- and enantiocontrol. This contra-electronegativity transmetallation demonstrates substantial potential to advance carbometallation reactions and open new avenues for cross-coupling chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unexpected contra-electronegativity transmetallation unlocks alkene carbomagnesiation to access quaternary stereocentres.
Fig. 2: Gram-scale reactions and synthetic applications.
Fig. 3: Control experiments and proposed catalytic cycles.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition no. 2417329 (12d). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this Paper.

References

  1. Grignard, V. Some new organometallic combinations of magnesium and their application to the synthesis of alcohols and hydrocarbons. C. R. Acad. Sci. 130, 1322–1325 (1900).

    CAS  Google Scholar 

  2. Silverman, G. S. & Rakita, P. E. (eds) Handbook of Grignard Reagents (Marcel Dekker, 1996).

  3. Knappke, C. E. I. & Wangelin, A. J. V. 35 years of palladium-catalyzed cross-coupling with Grignard reagents: how far have we come?. Chem. Soc. Rev. 40, 4948–4962 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Banno, T., Hayakawa, Y. & Umeno, M. Some applications of the Grignard cross-coupling reaction in the industrial field. J. Organomet. Chem. 653, 288–291 (2022).

    Article  Google Scholar 

  5. Walborsky, H. M. Mechanism of Grignard reagent formation. The surface nature of the reaction. Acc. Chem. Res. 23, 286–293 (1990).

    Article  CAS  Google Scholar 

  6. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angew. Chem. Int. Ed. 42, 4302–4432 (2003).

    Article  CAS  Google Scholar 

  7. Dzhemilev, U. M., Vostrikova, O. S. & Tolstikov, G. A. Homogeneous zirconium based catalysts in organic synthesis. J. Organomet. Chem. 304, 17–39 (1986).

    Article  CAS  Google Scholar 

  8. Murakami, K. & Yorimitsu, H. Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation. Beilstein J. Org. Chem. 9, 278–302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Müllera, D. S. & Marek, I. Copper mediated carbometalation reactions. Chem. Soc. Rev. 45, 4552–4566 (2016).

    Article  Google Scholar 

  10. Cohen, Y. & Marek, I. Regio- and diastereoselective carbometalation reaction of cyclopropenes. Acc. Chem. Res. 55, 2848–2868 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoveyda, A. H. & Xu, Z. Stereoselective formation of carbon-carbon bonds through metal catalysis. The zirconium-catalyzed ethylmagnesiation reaction. J. Am. Chem. Soc. 113, 5079–5080 (1991).

    Article  CAS  Google Scholar 

  12. Knight, K. S. & Waymouth, R. M. The zirconium-catalyzed ethylmagnesiation reaction, Zirconium-catalyzed diene and alkyl-alkene coupling reactions with magnesium reagents. J. Am. Chem. Soc. 113, 6268–6270 (1991).

    Article  CAS  Google Scholar 

  13. Takahashi, T. et al. Remarkably ‘Pair’ selective and regioselective carbon-carbon bond forming reaction of zirconacylclopentane derivatives with Grignard reagents. J. Am. Chem. Soc. 113, 6266–6268 (1991).

    Article  CAS  Google Scholar 

  14. Nakamura, M., Hirai, A. & Nakamura, E. Iron-catalyzed olefin carbometalation. J. Am. Chem. Soc. 122, 978–979 (2000).

    Article  CAS  Google Scholar 

  15. Liao, L. & Fox, J. M. A copper-catalyzed method for the facially selective addition of Grignard reagents to cyclopropenes. J. Am. Chem. Soc. 124, 14322–14323 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. de Armas, J. & Hoveyda, A. H. Zr-catalyzed electrophilic carbomagnesation of aryl olefins. Mechanism-based control of Zr-Mg ligand exchange. Org. Lett. 3, 2097–2100 (2001).

    Article  PubMed  Google Scholar 

  17. Dian, L., Muller, D. S. & Marek, I. Asymmetric copper-catalyzed carbomagnesiation of cyclopropenes. Angew. Chem. Int. Ed. 56, 6783–6787 (2017).

    Article  CAS  Google Scholar 

  18. Morken, J. P., Didiuk, M. T. & Hoveyda, A. H. Zirconium-catalyzed asymmetric carbomagnesation. J. Am. Chem. Soc. 115, 6997–6998 (1993).

    Article  CAS  Google Scholar 

  19. Didiuk, M. T., Johannes, C. W., Morken, J. P. & Hoveyda, A. H. Enantio-, diastereo- and regioselective zirconium-catalyzed carbomagnesation of cyclic ethers with higher alkyls of magnesium. Utility in synthesis and mechanistic implications. J. Am. Chem. Soc. 117, 7097–7104 (1995).

    Article  CAS  Google Scholar 

  20. Christoffers, J. & Baro, A. (eds) Quaternary Stereocenters: Challenges and Solutions for Organic Synthesis (Wiley, 2005).

  21. Feng, J.-J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Z.-B., Yin, H.-L. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, W. et al. Palladium-catalyzed enantioselective multicomponent cross-coupling of trisubstituted olefins. J. Am. Chem. Soc. 146, 16892–16901 (2024).

    Article  CAS  Google Scholar 

  25. Liu, C.-F. et al. Synthesis of tri- and tetrasubstituted stereocentres by nickel-catalysed enantioselective olefin cross-couplings. Nat. Catal. 5, 934–942 (2022).

    Article  CAS  Google Scholar 

  26. Luo, X. et al. Enantioselective synthesis of multifunctional alkylboronates via N-heterocyclic carbene–nickel-catalysed carboboration of alkenes. Nat. Synth. 3, 633–642 (2024).

    Article  CAS  Google Scholar 

  27. Zhang, W.-B., Chen, G. & Shi, S.-L. Enantioselective Ni/N-heterocyclic carbene-catalyzed redox-economical coupling of aldehydes, alkynes, and enones for rapid construction of acyclic all-carbon quaternary stereocenters. J. Am. Chem. Soc. 144, 130–136 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Z.-C., Gao, L., Liu, S.-Y., Wang, P. & Shi, S.-L. Facile access to quaternary carbon centers via Ni-catalyzed arylation of alkenes with organoborons. J. Am. Chem. Soc. 147, 3023–3031 (2025).

    Article  CAS  PubMed  Google Scholar 

  29. de Meijere, A. & Diederich, F. (eds) Metal-Catalyzed Cross-Coupling Reactions 2nd edn (Wiley, 2004).

  30. Yu, D.-G. et al. Direct arylation/alkylation/magnesiation of benzyl alcohols in the presence of Grignard reagents via Ni-, Fe- or Co-catalyzed sp3 C-O bond activation. J. Am. Chem. Soc. 134, 14638–14641 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, T. et al. Nickel-catalyzed chemoselective carbomagnesiation for atroposelective ring-opening difunctionalization. Angew. Chem. Int. Ed. 63, e202401756 (2024).

    Article  CAS  Google Scholar 

  32. Cai, Y. et al. Copper-catalyzed enantioselective Markovnikov protoboration of α-olefins enabled by a buttressed N-heterocyclic carbene ligand. Angew. Chem. Int. Ed. 57, 1376–1380 (2018).

    Article  CAS  Google Scholar 

  33. Ruan, L.-X., Sun, B., Liu, J.-M. & Shi, S.-L. Dynamic kinetic asymmetric arylation and alkenylation of ketones. Science 379, 662–670 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z.-C. et al. Enantioselective C–C cross-coupling of unactivated alkenes. Nat. Catal. 6, 1087–1097 (2023).

    Article  CAS  Google Scholar 

  35. Wang, Z.-C. & Shi, S.-L. Induced-fit chiral N-heterocyclic carbene ligands for asymmetric catalysis. Acc. Chem. Res. 58, 2157–2177 (2025).

    Article  CAS  PubMed  Google Scholar 

  36. Qi, X.-X. & Diao, T.-N. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wickham, L. M. & Giri, R. Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 54, 3415–3437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. How solvent dynamics controls the Schlenk equilibrium of Grignard reagents: a computational study of CH3MgCl in tetrahydrofuran. J. Phys. Chem. B 121, 4226–4237 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, H. et al. Directing-group-free catalytic dicarbofunctionalization of unactivated alkenes. Nat. Chem. 14, 188–195 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2022YFA1503702), the National Natural Science Foundation of China (22325110, 92256303, 22171280), the Strategic Priority Research Program of the CAS (XDB0610000, XDA0540000), and the CAS Youth Interdisciplinary Team (JCTD-2021-11). We thank Y. Wang for helpful discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.-L.S. conceived and directed the projects. X.Y. and B.S. performed the experiments. All authors analysed the data. S.-L.S. and B.S. wrote the manuscript.

Corresponding author

Correspondence to Shi-Liang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks David Nelson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Fig. 1

Source data

Source Data Fig. 3

Reaction profile—Fig. 3d

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Sun, B. & Shi, SL. Contra-electronegativity transmetallation unlocks alkene carbomagnesiation to access quaternary stereocentres. Nat. Chem. (2026). https://doi.org/10.1038/s41557-026-02073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41557-026-02073-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing