Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Conventional agriculture increases global warming while decreasing system sustainability

Abstract

Intensification of farming since the Green Revolution has led to large increases in yield but has also increased anthropogenic greenhouse gas emissions. Here, by providing a global comprehensive cradle-to-gate quantification from seed to yield, we show that the global warming potential (GWP) of conventional agriculture of grain crops has increased eightfold from 1961 to 2020, whereas the sustainability index (SI) has decreased threefold. Tillage, synthetic fertilizers and irrigation together accounted for 90% of the increased GWP, linked to tenfold increases in fertilization and groundwater use and more than doubled mechanized and irrigated areas. We highlight regions with high GWP and low SI, such as South Asia, and project further threefold increases in agriculture GWP by 2100 compared with 2020 (3.3 ± 0.73 PgCO2e) driven by declined use efficiency of the inputs. Green energy and climate-smart agriculture techniques can reduce the projected GWP in 2100 to 2.3 PgCO2e and increase the SI fourfold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LCA of the global warming of conventional agriculture.
Fig. 2: GWP of the conventional agriculture during 1961–2020.
Fig. 3: Variations in the global warming potential and system sustainability at country level in 2020.
Fig. 4: Global and regional warming of the conventional agriculture and its system sustainability.
Fig. 5: Future global warming of the conventional agriculture and its SI until 2100.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its Supplementary Information and Supplementary Data. The data for fertilizer use in agriculture and agronomic efficiency were retrieved from refs. 4,5,113 and using the databases of FAO6 and ref. 7. The data for seed consumption and harvested area were extracted from FAO databases1,55. The application rate of pesticides was adopted from FAO79. Data for the equipped area for irrigation and the fraction of the water source are available in FAO-AQUASTAT92. Supplementary datasets are also available via Figshare at https://doi.org/10.6084/m9.figshare.25997251(ref. 114). Source data are provided with this paper.

Code availability

Data collection and processing were performed in Microsoft Excel. Code developed for data processing in R in this study is available via Figshare at https://doi.org/10.6084/m9.figshare.25997251 (ref. 114).

References

  1. FAOSTAT Crops and Livestock Products. FAO www.fao.org/faostat/en/#data/QCL (2023).

  2. Sumberg, J. & Giller, K. E. What is ‘conventional’ agriculture? Glob. Food Secur. 32, 100617 (2022).

    Google Scholar 

  3. Gamage, A. et al. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 1, 100005 (2023).

    Google Scholar 

  4. Abdo, A. I. et al. Carbon footprint of synthetic nitrogen under staple crops: a first cradle-to-grave analysis. Glob. Change Biol. 30, e17277 (2024).

    CAS  Google Scholar 

  5. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    CAS  Google Scholar 

  6. FAOSTAT Fertilizers by Nutrient. FAO www.fao.org/faostat/en/#data/RFN (2023).

  7. Heffer, P., Gruère, A. & Roberts, T. Assessment of Fertilizer Use by Crop at the Global Level 2014–2014/15 (IFA, 2017).

  8. Porwollik, V., Rolinski, S., Heinke, J. & Müller, C. Generating a rule-based global gridded tillage dataset. Earth Syst. Sci. Data 11, 823–843 (2019).

    Google Scholar 

  9. FAOSTAT Machinery. FAO www.fao.org/faostat/en/#data/RM (2023).

  10. Clay, S. in Agriculture’s Ethical Horizon (ed. Zimdahl, R. L.) ix–xiv (Elsevier, 2022).

  11. Zeng, N. et al. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature 515, 394–397 (2014).

    CAS  Google Scholar 

  12. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    CAS  Google Scholar 

  13. FAOSTAT Emissions Totals. FAO www.fao.org/faostat/en/#data/GT (2024).

  14. Liu, D., Zhang, W., Wang, X., Guo, Y. & Chen, X. Greenhouse gas emissions and mitigation potential of hybrid maize seed production in Northwestern China. Environ. Sci. Pollut. Res. Int. 29, 17787–17798 (2022).

    CAS  Google Scholar 

  15. Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).

  16. Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).

    CAS  Google Scholar 

  17. Wyckhuys, K. A. G., Furlong, M. J., Zhang, W. & Gc, Y. D. Carbon benefits of enlisting nature for crop protection. Nat. Food 3, 299–301 (2022).

    CAS  Google Scholar 

  18. Lu, C. et al. Emerging weed resistance increases tillage intensity and greenhouse gas emissions in the US corn–soybean cropping system. Nat. Food 3, 266–274 (2022).

    CAS  Google Scholar 

  19. Mooney, S. J. & Sjogersten, S. Greenhouse gas emissions rise due to tillage. Nat. Food 3, 246 (2022).

    CAS  Google Scholar 

  20. Rothausen, S. G. S. A. & Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Change 1, 210–219 (2011).

    CAS  Google Scholar 

  21. Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).

    Google Scholar 

  22. Garnett, T. et al. Agriculture. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    CAS  Google Scholar 

  23. Gray, J. M. et al. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity. Nature 515, 398–401 (2014).

    CAS  Google Scholar 

  24. Food and Agriculture Organization Corporate Statistical Database. FAO www.fao.org/faostat/en/#data/EI (2023).

  25. Huang, Y. et al. Greenhouse gas emissions and crop yield in no-tillage systems: a meta-analysis. Agric. Ecosyst. Environ. 268, 144–153 (2018).

    CAS  Google Scholar 

  26. Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).

    CAS  Google Scholar 

  27. Yuan, S. et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12, 7163 (2021).

    CAS  Google Scholar 

  28. Haarhoff, S. J. & Swanepoel, P. A. Plant population and maize grain yield: a global systematic review of rainfed trials. Crop Sci. 58, 1819–1829 (2018).

    Google Scholar 

  29. Ding, J. et al. Tillage and seeding strategies for wheat optimizing production in harvested rice fields with high soil moisture. Sci. Rep. 11, 119 (2021).

    CAS  Google Scholar 

  30. Li, X. et al. Increased grain crop production intensifies the water crisis in Northern China. Earth’s Future 11, e2023EF003608 (2023).

    Google Scholar 

  31. Xiong, W. et al. Climate change, water availability and future cereal production in China. Agric. Ecosyst. Environ. 135, 58–69 (2010).

    Google Scholar 

  32. Belaud, G. et al. Irrigation and energy: issues and challenges. Irrig. Drain. 69, 177–185 (2019).

    Google Scholar 

  33. Singh, H., Singh, A. K., Kushwaha, H. L. & Singh, A. Energy consumption pattern of wheat production in India. Energy 32, 1848–1854 (2007).

    Google Scholar 

  34. Pathak, H. & Wassmann, R. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients. Agric. Syst. 94, 807–825 (2007).

    Google Scholar 

  35. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    CAS  Google Scholar 

  36. AQUASTAT Dissemination System. FAO-AQUASTAT https://data.apps.fao.org/aquastat/?lang=en (2023).

  37. Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).

    CAS  Google Scholar 

  38. Energy and Carbon Tracker. IEA www.iea.org/data-and-statistics/data-product/iea-energy-and-carbon-tracker-2020 (2020).

  39. Ludemann, C. I., Gruere, A., Heffer, P. & Dobermann, A. Global data on fertilizer use by crop and by country. Sci. Data 9, 501 (2022).

    Google Scholar 

  40. Schneider, J. M., Zabel, F. & Mauser, W. Global inventory of suitable, cultivable and available cropland under different scenarios and policies. Sci. Data 9, 527 (2022).

    Google Scholar 

  41. Ivanovich, C. C., Sun, T., Gordon, D. R. & Ocko, I. B. Future warming from global food consumption. Nat. Clim. Change 13, 297–302 (2023).

    Google Scholar 

  42. Ciampitti, I. A. & Vyn, T. J. Understanding global and historical nutrient use efficiencies for closing maize yield gaps. Agron. J. 106, 2107–2117 (2014).

    Google Scholar 

  43. Chen, X., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–232 (2020).

    Google Scholar 

  44. Mueller, N. D. et al. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 31, 245–257 (2017).

    CAS  Google Scholar 

  45. Winiwarter, W., Höglund-Isaksson, L., Klimont, Z., Schöpp, W. & Amann, M. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide. Environ. Res. Lett. 13, 014011 (2018).

    Google Scholar 

  46. Johnston, A. M. & Bruulsema, T. W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng. 83, 365–370 (2014).

    Google Scholar 

  47. Mulla, D. J. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114, 358–371 (2013).

    Google Scholar 

  48. Su, Y., Gabrielle, B. & Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 8, 33 (2021).

    Google Scholar 

  49. Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 agenda. Nat. Clim. Change 11, 656–664 (2021).

    Google Scholar 

  50. Abdelrazik, M. K., Abdelaziz, S. E., Hassan, M. F. & Hatem, T. M. Climate action: prospects of solar energy in Africa. Energy Rep. 8, 11363–11377 (2022).

    Google Scholar 

  51. Environmental Management: Life Cycle Assessment; Requirements and Guidelines 14044 (ISO, 2006).

  52. Environmental Management: Life Cycle Assessment; Principles and Framework 14040 (ISO, 2006).

  53. MacRobert, J. F., Setimela, P., Gethi, J. & Regasa, M. W. Maize Hybrid Seed Production Manual (International Maize and Wheat Improvement Center, 2014).

  54. Feistritzer, W. P. Cereal Seed Technology: A Manual of Cereal Seed Production, Quality Control, and Distribution (FAO, 1975).

  55. FAOSTAT Food Balances. FAO www.fao.org/faostat/en/#data/FBSH (2023).

  56. Verdi, L., Marta, A. D., Falconi, F., Orlandini, S. & Mancini, M. Comparison between organic and conventional farming systems using Life Cycle Assessment (LCA): a case study with an ancient wheat variety. Eur. J. Agron. 141, 126638 (2022).

    CAS  Google Scholar 

  57. Alsabri, A. & Al-Ghamdi, S. G. Carbon footprint and embodied energy of PVC, PE, and PP piping: perspective on environmental performance. Energy Rep. 6, 364–370 (2020).

    Google Scholar 

  58. Import of Seed for Sowing by Country—Calendar Year 2020 (ISF, 2020); https://worldseed.org/document/seed-imports-2020/

  59. CO2 Emissions From International Shipping in the Net Zero Scenario, 2000–2030. IEA www.iea.org/data-and-statistics/charts/co2-emissions-from-international-shipping-in-the-net-zero-scenario-2000-2030-2 (2022).

  60. Guidelines for National Greenhouse Gas Inventories (IGES, 2006).

  61. Freight Facts and Figures. BTS https://data.bts.gov/stories/s/Freight-Transportation-Energy-Use-Environmental-Im/f7sr-d4s8/ (2019).

  62. Guo, C., Liu, X. & He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 831, 154982 (2022).

    CAS  Google Scholar 

  63. Yu, X., Keitel, C. & Dijkstra, F. A. Global analysis of phosphorus fertilizer use efficiency in cereal crops. Glob. Food Secur. 29, 100545 (2021).

    Google Scholar 

  64. Dhillon, J. S., Eickhoff, E. M., Mullen, R. W. & Raun, W. R. World potassium use efficiency in cereal crops. Agron. J. 111, 889–896 (2019).

    CAS  Google Scholar 

  65. Brentrup, F., Hoxha, A. & Christensen, B. In The 10th International Conference on Life Cycle Assessment of Food (LCA Food 2016) 482–490 (University College Dublin, 2016).

  66. Amenumey, S. E. & Capel, P. D. Fertilizer consumption and energy input for 16 crops in the United States. Nat. Resour. Res. 23, 299–309 (2013).

    Google Scholar 

  67. Kim, G. W., Jeong, S. T., Kim, G. Y., Kim, P. J. & Kim, S. Y. Evaluation of carbon dioxide emission factor from urea during rice cropping season: a case study in Korean paddy soil. Atmos. Environ. 139, 139–146 (2016).

    CAS  Google Scholar 

  68. Kim, G. W. et al. Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season. Eur. J. Soil Biol. 83, 76–83 (2017).

    CAS  Google Scholar 

  69. Zhou, L. et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob. Change Biol. 20, 2332–2343 (2014).

    Google Scholar 

  70. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    CAS  Google Scholar 

  71. Zhan, X. et al. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 55, 1329–1338 (2021).

    CAS  Google Scholar 

  72. Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob. Biogeochem. Cycles 16, 8-1–8-14 (2002).

    Google Scholar 

  73. Wang, Y., Ying, H., Yin, Y., Zheng, H. & Cui, Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci. Total Environ. 657, 96–102 (2019).

    CAS  Google Scholar 

  74. Banger, K., Tian, H. & Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields. Glob. Change Biol. 18, 3259–3267 (2012).

    Google Scholar 

  75. Chen, J., Feng, M., Cui, Y. & Liu, G. The impacts of nitrogen addition on upland soil methane uptake: a global meta-analysis. Sci. Total Environ. 795, 148863 (2021).

    CAS  Google Scholar 

  76. Lu, F. E. I. et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no‐tillage in China’s cropland. Glob. Change Biol. 15, 281–305 (2009).

    Google Scholar 

  77. Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis. Soil Biol. Biochem. 101, 32–43 (2016).

    CAS  Google Scholar 

  78. Geisseler, D. & Scow, K. M. Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol. Biochem. 75, 54–63 (2014).

    CAS  Google Scholar 

  79. FAOSTAT Pesticides Use. FAO www.fao.org/faostat//en/#data/RP (2023).

  80. Gay, H. Before and after Silent Spring: from chemical pesticides to biological control and integrated pest management—Britain, 1945–1980. Ambix 59, 88–108 (2012).

    CAS  Google Scholar 

  81. Cech, R., Leisch, F., & Zaller, J. G. Pesticide use and associated greenhouse gas emissions in sugar beet, apples, and viticulture in Austria from 2000 to 2019. Agriculture 12, 879 (2022).

    CAS  Google Scholar 

  82. Green, M. B. Energy in pesticide manufacture, distribution and use. in Energy in Plant Nutrition and Pest Control. Energy in World Agriculture, Vol. 2 (ed. Helsel, Z.R.) 165–195 (Elsevier, 1987).

  83. Sainju, U. M. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils. PLoS ONE 11, e0148527 (2016).

    Google Scholar 

  84. Abdalla, K., Chivenge, P., Ciais, P. & Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences 13, 3619–3633 (2015).

    Google Scholar 

  85. McCarthy, B. et al. Trends in water use, energy consumption, and carbon emissions from irrigation: role of shifting technologies and energy sources. Environ. Sci. Technol. 54, 15329–15337 (2020).

    CAS  Google Scholar 

  86. Xu, Z. et al. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun. 11, 5837 (2020).

    CAS  Google Scholar 

  87. Batty, J. C. & Keller, J. in Handbook of Energy Utilization in Agriculture (ed. Pimentel, D.) 25–44 (CRC, 1980).

  88. Annual Report 2015–2016 (International Commission on Irrigation and Drainage, 2016).

  89. Wood, W. W. & Hyndman, D. W. Groundwater depletion: a significant unreported source of atmospheric carbon dioxide. Earth’s Future 5, 1133–1135 (2017).

    Google Scholar 

  90. Turner, P. A. et al. Indirect nitrous oxide emissions from streams within the US corn belt scale with stream order. Proc. Natl Acad. Sci. USA 112, 9839–9843 (2015).

    CAS  Google Scholar 

  91. McGill, B. M., Hamilton, S. K., Millar, N. & Robertson, G. P. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. Glob. Change Biol. 24, 5948–5960 (2018).

    Google Scholar 

  92. AQUASTAT—FAO's Global Information System on Water and Agriculture: Irrigation by Country. FAO-AQUASTAT www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/irrigation-by-country/ (2023).

  93. Rotz, C. A. & Muhtar, H. A. Rotary power requirements for harvesting and handling equipment. Appl. Eng. Agric. 8, 751–757 (1992).

    Google Scholar 

  94. Dubey, A. & Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 23, 332–350 (2009).

    CAS  Google Scholar 

  95. Jiang, Z. et al. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci. Total Environ. 670, 210–217 (2019).

    CAS  Google Scholar 

  96. Yin, W. et al. Energy budgeting, carbon budgeting, and carbon footprints of straw and plastic film management for environmentally clean of wheat–maize intercropping system in Northwestern China. Sci. Total Environ. 826, 154220 (2022).

    CAS  Google Scholar 

  97. Amos, B. & Walters, D. T. Maize root biomass and net rhizodeposited carbon. Soil Sci. Soc. Am. J. 70, 1489–1503 (2006).

    CAS  Google Scholar 

  98. Salam, M. U., Jones, J. W. & Jones, J. G. W. Phasic development of rice seedlings. Agron. J. 89, 653–658 (1997).

    Google Scholar 

  99. Bolinder, M. A., Janzen, H. H., Gregorich, E. G., Angers, D. A. & VandenBygaart, A. J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 118, 29–42 (2007).

    Google Scholar 

  100. Petersson, H. et al. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—a comparative study. For. Ecol. Manag. 270, 78–84 (2012).

    Google Scholar 

  101. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Google Scholar 

  102. Xu, S. et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022).

    CAS  Google Scholar 

  103. Kabeyi, M. J. B. & Olanrewaju, O. A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 9, 743114 (2022).

    Google Scholar 

  104. Zhang, W. F. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

    CAS  Google Scholar 

  105. Identifying Opportunities for Methane Recovery at U.S. Coal Mines (EPA, 2009).

  106. Chai, R. et al. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag. 14, 20 (2019).

    CAS  Google Scholar 

  107. Reilly, J. & Mercier, S. How U.S. Agriculture can be Part of the Climate Change Solution: Opportunities and Incentives for Farmers to Reduce Their Emissions and Turn the Industry Into a Net Carbon Sink (Farm Journal Foundation, 2021).

  108. Shou, Y. & Smithson, M. Evaluating predictors of dispersion: a comparison of dominance analysis and Bayesian model averaging. Psychometrika 80, 236–256 (2015).

    Google Scholar 

  109. Jiao, S., Xu, Y., Zhang, J., Hao, X. & Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems 4, e00313–e00318 (2019).

    CAS  Google Scholar 

  110. Bonett, D. G. Confidence interval for a coefficient of quartile variation. Comput. Stat. Data Anal. 50, 2953–2957 (2006).

    Google Scholar 

  111. Massicotte, P., South, A. & Hufkens, K. rnaturalearth: World map data from Natural Earth. R package version 0.3.4 https://CRAN.R-project.org/package=rnaturalearth (2023).

  112. Ginestet, C. ggplot2: elegant graphics for data analysis. J. R. Stat. Soc. A 174, 245–246 (2011).

    Google Scholar 

  113. Abdo, A. I. et al. Carbon footprint of global rice production and consumption. J. Clean. Prod. 474, 143560 (2024).

    CAS  Google Scholar 

  114. Abdo, A. I. et al. Supplementary datasets and code for ‘Conventional agriculture increases global warming while decreasing system sustainability’. Figshare https://doi.org/10.6084/m9.figshare.25997251 (2024).

Download references

Acknowledgements

This study was supported by the Key-Area Research and Development Program of Guangdong Province (2021B0202030002) to J.Z., the Guangdong Laboratory for Lingnan Modern Agriculture (NT2021010) to J.Z., the Science and Technology Planning Project of Guangdong Province of China (grant no. 2019B030301007) to J.Z. and the RUDN University Strategic Academic Leadership Program to Y.K.

Author information

Authors and Affiliations

Authors

Contributions

A.I.A. designed and coordinated the study, conducted data analysis and synthesis and wrote the paper. D.S. and Z.S. collected and arranged the data. M.K.A.-F. collected the data, carried out the case study and wrote the paper. J.Z. designed and coordinated the study, conducted the data analysis and revised the paper. Y.K. conducted the data analysis and revised the paper. All the co-authors reviewed and commented on the paper.

Corresponding author

Correspondence to Jiaen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Berien Elbersen, Stefano Menegat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The main explanatory variables affecting the regional GWP and SI of conventional agriculture.

a, Fertilizer application rate (kg ha−1). b, Grain yield (Mg ha−1). c, Fertilizer agronomic efficiency (kg kg−1). d, Seeding rate (kg ha−1). e, Pesticide rate (kg ha−1). f, Machinery value. g, Energy emission factor (kgCO2 GJ−1). h, Fraction of the equipped area for irrigation. i, Fraction of the groundwater in irrigation. CIS is the Commonwealth of Independent States.

Source data

Extended Data Fig. 2 The forecasted future changes in the population by FAO (a) and the interpreted grain production (b) during 1961–2020.

The values on the columns are the global values as sum of regional values. The future grain production was interpreted using the two-sided linear regression model of future population based on the current grain demand in 2020.

Source data

Extended Data Fig. 3 The global warming of all inputs in the conventional agriculture during 2020.

a, b, and c, the GWP values of seeds, fertilizers, and pesticides, respectively, including production, packaging, transportation, and application to the field. d, the GWP of tillage including emissions of machines and soil. e, the GWP of irrigation including emissions of installations and water lifting, pumping and degassing. f, the GWP of harvesting machines (that is combine, baler, and tub grinder).

Source data

Extended Data Fig. 4 The system sustainability index (SI) at country level for the years 1961, 1980 and 2000.

a, 1961. b, 1980. c, 2000. The SI is unitless and was calculated based on the biomass C and emitted C during biomass production.

Source data

Supplementary information

Supplementary Information

Supplementary Methods 1–4, Tables 1–14, Figs. 1–3 and References.

Reporting Summary

Supplementary Data 1–21

The whole inputs and outputs data.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Extended Data Fig. 1

Source data for Extended Fig. 1.

Source Data Extended Data Fig. 2

Source data for Extended Fig. 2.

Source Data Extended Data Fig. 3

Source data for Extended Fig. 3.

Source Data Extended Data Fig. 4

Source data for Extended Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdo, A.I., Sun, D., Shi, Z. et al. Conventional agriculture increases global warming while decreasing system sustainability. Nat. Clim. Chang. 15, 110–117 (2025). https://doi.org/10.1038/s41558-024-02170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-024-02170-4

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene