Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constrained Earth system models show a stronger reduction in future Northern Hemisphere snowmelt water

Abstract

Although Earth system models (ESMs) tend to overestimate historical land surface warming, they also overestimate snow amounts in the Northern Hemisphere. By combining ground-based datasets and ESMs, we find that this paradoxical phenomenon is predominantly driven by an overestimation of light snowfall frequency. Using spatially distributed emergent constraints, we show that this paradox persists in mid- (2041–2060) and long-term (2081–2100) projections, affecting more than half of the Northern Hemisphere’s land surface. ESMs underestimate the frequency of freezing days by 12–19% and overestimate snow water equivalent by 28–34%. Constrained projections indicate that the raw ESM outputs overestimate future Northern Hemisphere snowmelt water by 12–16% across 53–60% of the Northern Hemisphere’s land surface. This snowmelt water overprediction implies that the amount of water available in the future for agriculture, industry, ecosystems and domestic use may be lower than unadjusted ESM projections suggest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics and mechanisms of the snow water resources paradox in the extended NH cold season for the period 1982–2014.
Fig. 2: Observationally constrained projections of mean freezing day frequency and mean SWE in the extended NH cold season for the period 2041–2060 under SSP245 at the grid level.
Fig. 3: Implications for future annual mean snowmelt water in the NH under SSP245 for the period 2041–2060 at the grid level.

Similar content being viewed by others

Data availability

The daily precipitation products from GPCC, CPC and MSWEP were derived from https://opendata.dwd.de/climate_environment/GPCC/full_data_daily_v2022/, https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html and https://www.gloh2o.org/mswep/, respectively. The daily temperature records from Berkeley Earth, ERA5-Land, MERRA-2 and the Japanese 55-year Reanalysis (JRA-55) were derived from https://berkeleyearth.org/data/, https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview, https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ and https://rda.ucar.edu/datasets/d628000/, respectively. The CMIP6 model simulations, including SWE, snowmelt water, precipitation and temperature, were acquired from https://esgf-node.llnl.gov/projects/cmip6/. The CMIP5 model simulations were acquired from https://esgf-node.llnl.gov/projects/cmip5/. The observation-based SWE datasets were acquired from GlobSnow-v3 (https://doi.org/10.1594/PANGAEA.911944)79, SnowCCI-v2 (https://catalogue.ceda.ac.uk/uuid/93cf539bc3004cc8b98006e69078d86b/), MERRA-2 (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/), ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview), GLDAS-v2 (https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM10_M_2.0/summary?keywords=snow%20water%20equivalent), NCEP2 (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html), FLDAS (https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary?keywords=snow%20water%20equivalent), CFSR (https://esgf-node.llnl.gov/search/create-ip/) and ERA5 (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means?tab=overview). The Offline Land Model Experiment (LMIP) and the Prescribed Land Surface States (LFMIP) CMIP6 experiments, including SWE and snowmelt water, were derived from https://aims2.llnl.gov/search/cmip6/.

Code availability

Codes to reproduce the study are available via GitHub at https://github.com/alanchai/Overcoming-the-Northern-Hemisphere-snow-water-resources-paradox.git (ref. 80).

References

  1. Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).

    Article  CAS  Google Scholar 

  2. McBride, L. A. et al. Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth Syst. Dyn. 12, 545–579 (2021).

    Article  Google Scholar 

  3. Papalexiou, S. M. et al. Robustness of CMIP6 historical global mean temperature simulations: trends, long-term persistence, autocorrelation, and distributional shape. Earths Future 8, e2020EF001667 (2020).

    Article  Google Scholar 

  4. Chai, Y. et al. Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia. Nat. Commun. 13, 4124 (2022).

    Article  CAS  Google Scholar 

  5. Kouki, K. et al. Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014. Cryosphere 16, 1007–1030 (2022).

    Article  Google Scholar 

  6. Mudryk, L. et al. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere 14, 2495–2514 (2020).

    Article  Google Scholar 

  7. Zhu, X. et al. Historical evolution and future trend of Northern Hemisphere snow cover in CMIP5 and CMIP6 models. Environ. Res. Lett. 16, 065013 (2021).

    Article  Google Scholar 

  8. Santolaria-Otín, M. & Zolina, O. Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models. Clim. Dyn. 55, 2993–3016 (2020).

    Article  Google Scholar 

  9. Connolly, R. et al. Northern Hemisphere snow-cover trends (1967–2018): a comparison between climate models and observations. Geosciences 9, 135 (2019).

    Article  Google Scholar 

  10. Arheimer, B., Donnelly, C. & Lindström, G. Regulation of snow-fed rivers affects flow regimes more than climate change. Nat. Commun. 8, 62 (2017).

    Article  CAS  Google Scholar 

  11. Musselman, K. N. et al. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 11, 418–424 (2021).

    Article  Google Scholar 

  12. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  CAS  Google Scholar 

  13. Steppuhn, H. in Handbook of Snow: Principles, Processes, Management and Use (eds Gray, D. M. & Male, D. H.) 60–126 (Pergamon, 1981).

  14. Thackeray, C. W. et al. Quantifying the uncertainty in historical and future simulations of Northern Hemisphere spring snow cover. J. Clim. 29, 8647–8663 (2016).

    Article  Google Scholar 

  15. Wang, Z. et al. Reasons for east Siberia winter snow water equivalent increase in the recent decades. Remote Sens. 15, 134 (2022).

    Article  CAS  Google Scholar 

  16. Berghuijs, W. R., Woods, R. A. & Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Change 4, 583–586 (2014).

    Article  Google Scholar 

  17. Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article  Google Scholar 

  18. Armstrong, R. L. & Brodzik, M. J. Recent Northern Hemisphere snow extent: a comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett. 28, 3673–3676 (2001).

    Article  Google Scholar 

  19. Ren, Y. & Liu, S. Different influences of temperature on snow cover and sea ice area in the Northern Hemisphere. Geogr. Res. 37, 870–882 (2018).

    Google Scholar 

  20. Nitta, T. et al. Representing variability in subgrid snow cover and snow depth in a global land model: offline validation. J. Clim. 27, 3318–3330 (2014).

    Article  Google Scholar 

  21. Shi, H. X. & Wang, C. H. Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble. Cryosphere 9, 1943–1953 (2015).

    Article  Google Scholar 

  22. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37, 407–418 (2011).

    Article  Google Scholar 

  23. Menard, C. B. et al. Scientific and human errors in a snow model intercomparison. Bull. Am. Meteorol. Soc. 102, E61–E79 (2021).

    Article  Google Scholar 

  24. Hall, A. et al. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article  Google Scholar 

  25. Klein, S. A. & Hall, A. Emergent constraints for cloud feedbacks. Curr. Clim. Change Rep. 1, 276–287 (2015).

    Article  Google Scholar 

  26. Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

    Article  Google Scholar 

  27. Williamson, M. S. et al. Emergent constraints on climate sensitivities. Rev. Mod. Phys. 93, 025004 (2021).

    Article  CAS  Google Scholar 

  28. Chai, Y. et al. Using precipitation sensitivity to temperature to adjust projected global runoff. Environ. Res. Lett. 16, 124032 (2021).

    Article  Google Scholar 

  29. Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553, 319–322 (2018).

    Article  CAS  Google Scholar 

  30. Cox, P. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article  CAS  Google Scholar 

  31. Chai, Y. et al. Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. npj Clim. Atmos. Sci. 4, 6 (2021).

    Article  Google Scholar 

  32. Hall, A. & Qu, X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett. 33, L03502 (2006).

    Article  Google Scholar 

  33. Thackeray, C. W. & Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 9, 972–978 (2019).

    Article  Google Scholar 

  34. Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582, 379–383 (2020).

    Article  CAS  Google Scholar 

  35. Sherwood, S. C., Bony, S. & Dufresne, J. L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).

    Article  Google Scholar 

  36. DeAngelis, A. M. et al. An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249–253 (2015).

    Article  CAS  Google Scholar 

  37. Rohde, R. A. & Hausfather, Z. The Berkeley Earth land/ocean temperature record. Earth Syst. Sci. Data 12, 3469–3479 (2020).

    Article  Google Scholar 

  38. He, C. et al. Can convection‐permitting modeling provide decent precipitation for offline high‐resolution snowpack simulations over mountains? J. Geophys. Res. Atmos. 124, 12631–12654 (2019).

    Article  Google Scholar 

  39. Rasmussen, R. M. et al. CONUS404: the NCAR–USGS 4-km long-term regional hydroclimate reanalysis over the CONUS. Bull. Am. Meteorol. Soc. 104, E1382–E1408 (2023).

    Article  Google Scholar 

  40. Rudisill, W., Rhoades, A., Xu, Z. & Feldman, D. R. Are atmospheric models too cold in the mountains? The state of science and insights from the SAIL field campaign. Bull. Am. Meteorol. Soc. 105, E1237–E1264 (2024).

    Article  Google Scholar 

  41. Hoffman, F. M. et al. Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. J. Geophys. Res. Biogeosci. 119, 141–162 (2014).

    Article  CAS  Google Scholar 

  42. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article  Google Scholar 

  43. Mortimer, C. et al. Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere 14, 1579–1594 (2020).

    Article  Google Scholar 

  44. Mudryk, L. R. et al. Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Clim. 28, 8037–8051 (2015).

    Article  Google Scholar 

  45. Pulliainen, J. et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 581, 294–298 (2020).

    Article  CAS  Google Scholar 

  46. Bowman, K. W. et al. A hierarchical statistical framework for emergent constraints: application to snow-albedo feedback. Geophys. Res. Lett. 45, 13050–13059 (2018).

    Article  Google Scholar 

  47. Annan, J. D. & Hargreaves, J. C. Reliability of the CMIP3 ensemble. Geophys. Res. Lett. 37, L02803 (2010).

    Article  Google Scholar 

  48. Schurer, A. et al. Estimating the transient climate response from observed warming. J. Clim. 31, 8645–8663 (2018).

    Article  Google Scholar 

  49. Shamekh, S. et al. Implicit learning of convective organization explains precipitation stochasticity. Proc. Natl Acad. Sci. USA 120, e2216158120 (2023).

    Article  CAS  Google Scholar 

  50. Chen, D. & Dai, A. Precipitation characteristics in the Community Atmosphere Model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst. 11, 2352–2374 (2019).

    Article  Google Scholar 

  51. Chen, D., Dai, A. & Hall, A. The convective‐to‐total precipitation ratio and the “drizzling” bias in climate models. J. Geophys. Res. Atmos. 126, e2020JD034198 (2021).

    Article  Google Scholar 

  52. Stephens, G. L. et al. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 115, D24211 (2010).

    Article  Google Scholar 

  53. Rosa, D. & Collins, W. D. A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison. Geophys. Res. Lett. 40, 5999–6003 (2013).

    Article  Google Scholar 

  54. Wilcox, E. M. & Donner, L. J. The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Clim. 20, 53–69 (2007).

    Article  Google Scholar 

  55. Kopparla, P. et al. Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys. Res. Lett. 40, 5803–5808 (2013).

    Article  Google Scholar 

  56. Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  57. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  Google Scholar 

  58. Reichle, R. H. et al. Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30, 2937–2960 (2017).

    Article  Google Scholar 

  59. Cortés, G., Girotto, M. & Margulis, S. Snow process estimation over the extratropical Andes using a data assimilation framework integrating MERRA data and Landsat imagery. Water Resour. Res. 52, 2582–2600 (2016).

    Article  Google Scholar 

  60. Lim, Y. K. et al. Atmospheric summer teleconnections and Greenland ice sheet surface mass variations: insights from MERRA-2. Environ. Res. Lett. 11, 024002 (2016).

    Article  Google Scholar 

  61. Saavedra, F. A. et al. Changes in Andes snow cover from MODIS data, 2000–2016. Cryosphere 12, 1027–1046 (2018).

    Article  Google Scholar 

  62. Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).

    Article  CAS  Google Scholar 

  63. Luojus, K. et al. GlobSnow v3.0 Northern Hemisphere snow water equivalent dataset. Sci. Data 8, 163 (2021).

    Article  Google Scholar 

  64. Mortimer, C. et al. Benchmarking algorithm changes to the Snow CCI+ snow water equivalent product. Remote Sens. Environ. 274, 112988 (2022).

    Article  Google Scholar 

  65. Gelaro, R. et al. The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  Google Scholar 

  66. Balsamo, G. et al. ERA-Interim/Land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 19, 389–407 (2015).

    Article  Google Scholar 

  67. Hoffmann, L. & Spang, R. An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses. Atmos. Chem. Phys. 22, 4019–4046 (2022).

    Article  CAS  Google Scholar 

  68. Sato, K. & Inoue, J. Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Clim. Dyn. 50, 289–301 (2018).

    Article  Google Scholar 

  69. Palerme, C. et al. Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmos. Res. 190, 104–112 (2017).

    Article  Google Scholar 

  70. Brown, R., Tapsoba, D. & Derksen, C. Evaluation of snow water equivalent datasets over the Saint‐Maurice River basin region of southern Québec. Hydrol. Process. 32, 2748–2764 (2018).

    Article  Google Scholar 

  71. Terzago, S. et al. Snowpack changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 global climate models. J. Hydrometeorol. 15, 2293–2313 (2014).

    Article  Google Scholar 

  72. Iseri, Y. et al. Dynamical downscaling of global reanalysis data for high-resolution spatial modeling of snow accumulation/melting at the central/southern Sierra Nevada watersheds. J. Hydrol. 598, 126445 (2021).

    Article  Google Scholar 

  73. Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article  Google Scholar 

  74. McNally, A. FLDAS Noah Land Surface Model L4 Global Monthly 0.1 × 0.1 degree (MERRA-2 and CHIRPS) (Goddard Earth Sciences Data and Information Services Center, 2018); https://doi.org/10.5067/5NHC22T9375G

  75. Kanamitsu, M. et al. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644 (2002).

    Article  Google Scholar 

  76. Sun, Q. et al. A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2018).

    Article  Google Scholar 

  77. Chen, X. et al. Emergent constraints on future projections of the western North Pacific Subtropical High. Nat. Commun. 11, 2802 (2020).

    Article  CAS  Google Scholar 

  78. Li, C. et al. Constraining projected changes in rare intense precipitation events across global land regions. Geophys. Res. Lett. 51, e2023GL105605 (2024).

    Article  Google Scholar 

  79. Luojus, K. et al. GlobSnow v3.0 snow water equivalent (SWE) [dataset]. PANGAEA https://doi.org/10.1594/PANGAEA.911944 (2020).

  80. Chai, Y. et al. Overcoming-the-Northern-Hemisphere-snow-water-resources-paradox. GitHub https://github.com/alanchai/Overcoming-the-Northern-Hemisphere-snow-water-resources-paradox.git (2024).

Download references

Acknowledgements

C.M. acknowledges support from the National Key Research and Development Program of China (2024YFF0809301) and the National Natural Science Foundation of China (U24A20572). Y.C. acknowledges support from the National Natural Science Foundation of China (42301018). P.G. acknowledges National Science Foundation (NSF) LEAP Science and Technology Center award no. 2019625. L.S. acknowledges the UKRI FLF scheme (MR/V022008/1).

Author information

Authors and Affiliations

Authors

Contributions

Y.C., C.M. and F.Z. led the writing, designed the research and performed the data analysis. P.G., L.M., C.W.T., W.R.B., Y.W., X.F., L.S. and Q.S. revised the paper and provided valuable comments.

Corresponding author

Correspondence to Chiyuan Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–10, Figs. 1–32 and Tables 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Y., Miao, C., Gentine, P. et al. Constrained Earth system models show a stronger reduction in future Northern Hemisphere snowmelt water. Nat. Clim. Chang. 15, 514–520 (2025). https://doi.org/10.1038/s41558-025-02308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02308-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing