Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Marine heatwaves select for thermal tolerance in a reef-building coral

Abstract

Standing genetic variation in fitness-related traits is critical to determine how fast populations can adapt to climate warming but is unknown for many species. Here we show that heritable genetic variation in heat tolerance in reef-building coral populations is widespread and strongly associated with selective pressure imposed by marine heatwaves. Our findings suggest that coral populations may be adapting to warming consistent with recent increases in their upper thermal limits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variation in the heat survival of coral families across the Indo-Pacific.
Fig. 2: Adaptive genetic variation in heat survival in coral populations.

Similar content being viewed by others

Data availability

All data are available in the Supplementary Information, including the survival and settlement of coral larvae used in experiments and the thermal history of source populations.

References

  1. Ainsworth, T. D. & Brown, B. E. Coral bleaching. Curr. Biol. 31, R5–R6 (2021).

    Article  CAS  Google Scholar 

  2. Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).

    Article  Google Scholar 

  3. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article  CAS  Google Scholar 

  4. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article  CAS  Google Scholar 

  5. Coleman, M. & Wernberg, T. The silver lining of extreme events. Trends Ecol. Evol. 35, 1065–1067 (2020).

    Article  CAS  Google Scholar 

  6. Humanes, A. et al. Within-population variability in coral heat tolerance indicates climate adaptation potential. Proc. R. Soc. B 289, 20220872 (2022).

    Article  Google Scholar 

  7. Naugle, M. S. et al. Heat tolerance varies considerably within a reef-building coral species on the Great Barrier Reef. Commun. Earth Environ. 5, 525 (2024).

    Article  Google Scholar 

  8. Denis, H. et al. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc. R. Soc. B 291, 20240587 (2024).

    Article  Google Scholar 

  9. Kirk, N. L., Howells, E. J., Abrego, D., Burt, J. A. & Meyer, E. Genomic and transcriptomic signals of thermal tolerance in heat‐tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf. Mol. Ecol. 27, 5180–5194 (2018).

    Article  CAS  Google Scholar 

  10. Dziedzic, K. E., Elder, H., Tavalire, H. & Meyer, E. Heritable variation in bleaching responses and its functional genomic basis in reef‐building corals (Orbicella faveolata). Mol. Ecol. 28, 2238–2253 (2019).

    Article  Google Scholar 

  11. Elder, H. et al. Genetic variation in heat tolerance of the coral Platygyra daedalea indicates potential for adaptation to ocean warming. Front. Mar. Sci. 9, 925845 (2022).

    Article  Google Scholar 

  12. Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7, eabg6070 (2021).

    Article  CAS  Google Scholar 

  13. Humanes, A. et al. Selective breeding enhances coral heat tolerance to marine heatwaves. Nat. Commun. 15, 8703 (2024).

    Article  CAS  Google Scholar 

  14. Bairos-Novak, K. R., Hoogenboom, M. O., van Oppen, M. J. & Connolly, S. R. Coral adaptation to climate change: meta‐analysis reveals high heritability across multiple traits. Glob. Change Biol. 27, 5694–5710 (2021).

    Article  CAS  Google Scholar 

  15. Howells, E. J., Bay, L. K. & Bay, R. in Coral Reef Conservation and Restoration in the Omics Age (eds van Oppen M. J. H. & Aranda, M.) 55–70 (Springer, 2022).

  16. Diamond, S. E. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Ann. N. Y. Acad. Sci. 1389, 5–19 (2017).

    Article  Google Scholar 

  17. Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).

    Article  Google Scholar 

  18. Heron, S. F., Maynard, J. A., Van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

    Article  CAS  Google Scholar 

  19. Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).

    Article  Google Scholar 

  20. Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A. & Al-Jailani, H. Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs 38, 567–589 (2019).

    Article  Google Scholar 

  21. Sully, S., Burkepile, D. E., Donovan, M., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).

    Article  CAS  Google Scholar 

  22. Shlesinger, T. & van Woesik, R. Oceanic differences in coral-bleaching responses to marine heatwaves. Sci. Total Environ. 871, 162113 (2023).

    Article  CAS  Google Scholar 

  23. Hughes, T. P. et al. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. 31, 5393–5399 (2021).

    Article  CAS  Google Scholar 

  24. Marzonie, M. R. et al. The effects of marine heatwaves on acute heat tolerance in corals. Glob. Change Biol. 29, 404–416 (2023).

    Article  CAS  Google Scholar 

  25. Denis, H. et al. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc. R Soc. B 291, 20240587 (2024).

    Article  Google Scholar 

  26. Jin, Y. K. et al. Genetic markers for antioxidant capacity in a reef-building coral. Sci. Adv. 2, e1500842 (2016).

    Article  Google Scholar 

  27. Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching. Science 369, eaba4674 (2020).

    Article  CAS  Google Scholar 

  28. Baird, A. & Marshall, P. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).

    Article  Google Scholar 

  29. Muller, E. M., Bartels, E. & Baums, I. B. Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife 7, e35066 (2018).

    Article  Google Scholar 

  30. McManus, L. C. et al. Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. Glob. Change Biol. 27, 4307–4321 (2021).

    Article  CAS  Google Scholar 

  31. Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    Article  Google Scholar 

  32. Matz, M. V., Treml, E. A. & Haller, B. C. Estimating the potential for coral adaptation to global warming across the Indo‐West Pacific. Glob. Change Biol. 26, 3473–3481 (2020).

    Article  Google Scholar 

  33. Wright, R. M. et al. Positive genetic associations among fitness traits support evolvability of a reef‐building coral under multiple stressors. Glob. Change Biol. 25, 3294–3304 (2019).

    Article  Google Scholar 

  34. Lachs, L. et al. No apparent trade-offs associated with heat tolerance in a reef-building coral. Commun. Biol. 6, 400 (2023).

    Article  Google Scholar 

  35. Baird, A. H. et al. An Indo-Pacific coral spawning database. Sci. Data 8, 35 (2021).

    Article  Google Scholar 

  36. Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 1–22 (2016).

    Article  Google Scholar 

  37. Yakovleva, I. M. et al. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar. Ecol. Prog. Ser. 378, 105–112 (2009).

    Article  CAS  Google Scholar 

  38. Hadfield, J. MCMCglmm course notes. Github https://github.com/jarrodhadfield/MCMCglmm/blob/master/vignettes/CourseNotes.pdf (2019).

  39. de Villemereuil, P. Estimation of a Biological Trait Heritability Using the Animal Model: How to Use the MCMCglmm R Package (2012); https://devillemereuil.legtux.org/wp-content/uploads/2012/12/tuto_en.pdf

  40. de Villemereuil, P., Gimenez, O. & Doligez, B. Comparing parent–offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods Ecol. Evol. 4, 260–275 (2013).

    Article  Google Scholar 

  41. De Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204, 1281–1294 (2016).

    Article  Google Scholar 

  42. de Villemereuil, P. How to Use the QGglmm Package? (R Project, 2020).

  43. Daily global 5km satellite coral bleaching heat stress monitoring. NOAA Coral Reef Watch https://coralreefwatch.noaa.gov/product/5km (2023).

  44. AIMS Temperature Logger Program. Australian Institute of Marine Science https://apps.aims.gov.au/ts-explorer (2018).

Download references

Acknowledgements

We thank the following for assistance with fieldwork, coral spawning and larval experiments: G. Vaughan, D. McParland and A. Mihala at New York University Saadiyat Island; F. Sinniger Harii at the Sesoko Marine Research Station; J. Nielsen, G. Matthews, A. Severati and the National Sea Simulator Team at the Australian Institute of Marine Science; F. McGregor at Coral Bay Research Station; and M. Muniz Barreto and S.-H. Hung (Sandy) at King Abdullah University of Science and Technology. This research was supported by a University of Wollongong Vice-Chancellor’s Postdoctoral Research Fellowship (E.J.H.), a Hermon Slade Foundation Grant (E.J.H. and D.A.) and a King Abdullah University of Science and Technology Competitive Research Grant (M.A. and E.J.H.).

Author information

Authors and Affiliations

Authors

Contributions

E.J.H. designed the study. E.J.H., D.A., E.P.-S. and S.S.-R. undertook fieldwork, coral breeding and experiments. H.D. provided the environmental data. J.A.B., S.H., L.K.B. and M.A. provided resources. E.J.H. and K.M. analysed the data. E.J.H. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to E. J. Howells.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting Summary

Supplementary Tables 1–6

Supplementary Table 1. Survival of larval families of the brain coral, P. daedalea, from quantitative breeding experiments across the Indo-Pacific. Supplementary Table 2. Quantitative genetic parameters for the heat survival of larval families of the brain coral, P. daedalea, in populations across the Indo-Pacific. Supplementary Table 3. Summary of thermal history variables for populations of the brain coral, P. daedalea, sampled across the Indo-Pacific. Supplementary Table 4. Thermal history predictors of additive genetic variation (VA) for heat survival in populations of the brain coral, P. daedalea, across the Indo-Pacific. Supplementary Table 5. Survival and settlement of larval families of the brain coral, P. daedalea, from a quantitative breeding experiment in a Great Barrier Reef population. Supplementary Table 6. Quantitative genetic parameters for multiple traits of larval families of the brain coral, P. daedalea, in a Great Barrier Reef population.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howells, E.J., Abrego, D., Schmidt-Roach, S. et al. Marine heatwaves select for thermal tolerance in a reef-building coral. Nat. Clim. Chang. 15, 829–832 (2025). https://doi.org/10.1038/s41558-025-02381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02381-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing