Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using generative AI to increase sceptics’ engagement with climate science

Abstract

Climate scepticism remains an important barrier to public engagement with accurate climate information, because sceptics often actively avoid information that contains climate science facts. There still lacks a scalable, repeatable intervention to boost sceptics’ engagement with climate information. Here we show that generative artificial intelligence can enhance engagement with climate science among sceptical audiences by subtly modifying headlines to reduce anticipated disagreement, regret and negative emotions, without compromising factual integrity. Headlines of climate science articles modified by an open-source large language model led to more bookmarks and more upvotes, and these effects were strongest among the most sceptical participants. Participants who engaged with climate science as a result of this intervention showed a shift in beliefs towards alignment with the scientific consensus. These results show that generative artificial intelligence can alter the information diet sceptics consume and holds promise for advancing public understanding of science when responsibly deployed by well-intentioned actors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental methods.
Fig. 2: Main results on the engagement of sceptics with climate news.
Fig. 3: Participants’ shift towards alignment with the scientific consensus at the end of the study for three beliefs.

Similar content being viewed by others

Data availability

The data are available via GitHub at https://github.com/bencebago/climate_headlines_personalization/tree/main/data ref. 77.

Code availability

The code for the analysis and all materials is available via GitHub at https://github.com/bencebago/climate_headlines_personalization/tree/main/analysis.

References

  1. Meng, Y., Broom, M. & Li, A. Impact of misinformation in the evolution of collective cooperation on networks. J. R. Soc. Interface 20, 20230295 (2023).

    Article  Google Scholar 

  2. Kopp, C., Korb, K. B. & Mills, B. I. Information-theoretic models of deception: modelling cooperation and diffusion in populations exposed to ‘fake news’. PLoS ONE 13, e0207383 (2018).

    Article  Google Scholar 

  3. Levin, S. A. & Weber, E. U. Polarization and the psychology of collectives. Perspect. Psychol. Sci. 19, 335–343 (2024).

    Article  Google Scholar 

  4. Loomba, S., de Figueiredo, A., Piatek, S. J., de Graaf, K. & Larson, H. J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 5, 337–348 (2021).

    Article  Google Scholar 

  5. Abascal, M., Huang, T. J. & Tran, V. C. Intervening in anti-immigrant sentiments: the causal effects of factual information on attitudes toward immigration. Ann. Am. Acad. Pol. Soc. Sci. 697, 174–191 (2021).

    Article  Google Scholar 

  6. Hornsey, M. J., Harris, E. A., Bain, P. G. & Fielding, K. S. Meta-analyses of the determinants and outcomes of belief in climate change. Nat. Clim. Change 6, 622–626 (2016).

    Article  Google Scholar 

  7. Van der Linden, S., Leiserowitz, A. & Maibach, E. The gateway belief model: a large-scale replication. J. Environ. Psychol. 62, 49–58 (2019).

    Article  Google Scholar 

  8. Lewandowsky, S. Climate change disinformation and how to combat it. Annu. Rev. Public Health 42, 1–21 (2021).

    Article  Google Scholar 

  9. Van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D. & Maibach, E. W. The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE 10, e0118489 (2015).

    Article  Google Scholar 

  10. Goldberg, M. H., van der Linden, S., Maibach, E. & Leiserowitz, A. Discussing global warming leads to greater acceptance of climate science. Proc. Natl Acad. Sci. USA 116, 14804–14805 (2019).

    Article  CAS  Google Scholar 

  11. Većkalov, B. et al. A 27-country test of communicating the scientific consensus on climate change. Nat. Hum. Behav. 8, 1892–1905 (2024).

    Article  Google Scholar 

  12. Bago, B., Rand, D. G. & Pennycook, G. Reasoning about climate change. Proc. Natl Acad. Sci. USA 2, pgad100 (2023).

    Google Scholar 

  13. Feldman, L. & Hart, P. S. Broadening exposure to climate change news? How framing and political orientation interact to influence selective exposure. J. Commun. 68, 503–524 (2018).

    Article  Google Scholar 

  14. Peterson, E. & Iyengar, S. Partisan gaps in political information and information seeking behavior: motivated reasoning or cheerleading? Am. J. Political Sci. 65, 133–147.

  15. Areni, C. S. Motivated reasoning and climate change: comparing news sources, politicization, intensification, and qualification in denier versus believer subreddit comments. Appl. Cogn. Psychol. 38, e4167 (2024).

    Article  Google Scholar 

  16. Newman, T. P., Nisbet, E. C. & Nisbet, M. C. Climate change, cultural cognition, and media effects: worldviews drive news selectivity, biased processing, and polarized attitudes. Pub. Understand. Sci. 27, 985–1002 (2018).

    Article  Google Scholar 

  17. Bolin, J. L. & Hamilton, L. C. The news you choose: news media preferences amplify views on climate change. Environ. Polit. 27, 455–476 (2018).

    Article  Google Scholar 

  18. Wang, Y. & Jaidka, K. Confirmation bias in seeking climate information: employing relative search volume to predict partisan climate opinions. Soc. Sci. Comput. Rev. 42, 4–24 (2024).

    Article  Google Scholar 

  19. Sweeny, K., Melnyk, D., Miller, W. & Shepperd, J. A. Information avoidance: who, what, when, and why. Rev. Gen. Psychol. 14, 340–353 (2010).

    Article  Google Scholar 

  20. Bénabou, R. & Tirole, J. Identity, morals, and taboos: beliefs as assets. Q. J. Econ. 126, 805–855 (2011).

    Article  Google Scholar 

  21. Golman, R., Hagmann, D. & Loewenstein, G. Information avoidance. J. Econ. Lit. 55, 96–135 (2017).

    Article  Google Scholar 

  22. Andersen, K., Toff, B. & Ytre-Arne, B. Introduction: what we (don’t) know about news avoidance. Journal. Stud. 25, 1367–1384 (2024).

    Google Scholar 

  23. Skovsgaard, M. & Andersen, K. Conceptualizing news avoidance: towards a shared understanding of different causes and potential solutions. Journal. Stud. 21, 459–476 (2020).

    Google Scholar 

  24. Mangold, F., Schoch, D. & Stier, S. Ideological self-selection in online news exposure: evidence from europe and the us. Sci. Adv. 10, eadg9287 (2024).

    Article  Google Scholar 

  25. Hickman, C. et al. Climate anxiety in children and young people and their beliefs about government responses to climate change: a global survey. Lancet Planet. Health 5, e863–e873 (2021).

    Article  Google Scholar 

  26. Bayes, R. & Druckman, J. N. Motivated reasoning and climate change. Curr. Opin Behav. Sci. 42, 27–35 (2021).

    Article  Google Scholar 

  27. Newman, N., Fletcher, R., Eddy, K., Robertson, C. T. & Nielsen, R. K. Reuters Institute Digital News Report 2023. Tech. Rep. (Reuters Institute for the Study of Journalism, 2023); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2023

  28. Chinn, S., Hart, P. S. & Soroka, S. Politicization and polarization in climate change news content, 1985–2017. Science Communication 42, 112–129 (2020).

    Article  Google Scholar 

  29. Malka, A., Krosnick, J. A. & Langer, G. The association of knowledge with concern about global warming: trusted information sources shape public thinking. Risk Anal. 29, 633–647 (2009).

    Article  Google Scholar 

  30. Feldman, L., Myers, T. A., Hmielowski, J. D. & Leiserowitz, A. The mutual reinforcement of media selectivity and effects: testing the reinforcing spirals framework in the context of global warming. J. Commun. 64, 590–611 (2014).

    Article  Google Scholar 

  31. Edenbrandt, A. K., Lagerkvist, C. J. & Nordström, J. Interested, indifferent or active information avoiders of carbon labels: cognitive dissonance and ascription of responsibility as motivating factors. Food Policy 101, 102036 (2021).

    Article  Google Scholar 

  32. d’Adda, G., Gao, Y., Golman, R. & Tavoni, M. Strategic information avoidance, belief manipulation and the effectiveness of green nudges. Ecol. Econ. 222, 108191 (2024).

    Article  Google Scholar 

  33. Sharot, T. & Sunstein, C. R. How people decide what they want to know. Nat. Hum. Behav. 4, 14–19 (2020).

    Article  Google Scholar 

  34. Dorison, C. A., Minson, J. A. & Rogers, T. Selective exposure partly relies on faulty affective forecasts. Cognition 188, 98–107 (2019).

    Article  Google Scholar 

  35. Newman, N., Fletcher, R., Schulz, A., Simge, A. & Nielsen, R. K. Reuters Institute Digital News Report 2020. Tech. Rep. (Reuters Institute for the Study of Journalism, 2020); https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf

  36. Newman, N., Fletcher, R., Eddy, K., Robertson, C. T. & Nielsen, R. K. Reuters Institute Digital News Report 2022. Tech. Rep. (Reuters Institute for the Study of Journalism, 2022); https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2022

  37. González-Bailón, S. et al. Asymmetric ideological segregation in exposure to political news on facebook. Science 381, 392–398 (2023).

    Article  Google Scholar 

  38. Iyengar, S. & Hahn, K. S. Red media, blue media: evidence of ideological selectivity in media use. J. Commun. 59, 19–39 (2009).

    Article  Google Scholar 

  39. Petersen, A. M., Vincent, E. M. & Westerling, A. L. Discrepancy in scientific authority and media visibility of climate change scientists and contrarians. Nat. Commun. 10, 3502 (2019).

    Article  CAS  Google Scholar 

  40. Koehler, D. J. Can journalistic ‘false balance’ distort public perception of consensus in expert opinion? J. Exp. Psychol. Appl. 22, 24 (2016).

    Article  Google Scholar 

  41. Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G. & Rand, D. G. Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31, 770–780 (2020).

    Article  Google Scholar 

  42. Pennycook, G. et al. Shifting attention to accuracy can reduce misinformation online. Nature 592, 590–595 (2021).

    Article  CAS  Google Scholar 

  43. Frimer, J. A., Skitka, L. J. & Motyl, M. Liberals and conservatives are similarly motivated to avoid exposure to one another’s opinions. J. Exper. Soc. Psychol. 72, 1–12 (2017).

    Article  Google Scholar 

  44. Nyhan, B. et al. Like-minded sources on facebook are prevalent but not polarizing. Nature 620, 137–144 (2023).

    Article  CAS  Google Scholar 

  45. Robertson, R. E. et al. Users choose to engage with more partisan news than they are exposed to on Google search. Nature 618, 342–348 (2023).

    Article  CAS  Google Scholar 

  46. Janét, K., Richards, O. & Landrum, A. R. Headline format influences evaluation of, but not engagement with, environmental news. Journal. Pract. 16, 35–55 (2022).

    Google Scholar 

  47. Feldman, L. & Hart, P. S. Upping the ante? The effects of ‘emergency’ and ‘crisis’ framing in climate change news. Clim. Change 169, 10 (2021).

    Article  Google Scholar 

  48. Chapman, D. A., Lickel, B. & Markowitz, E. M. Reassessing emotion in climate change communication. Nat. Clim. Change 7, 850–852 (2017).

    Article  Google Scholar 

  49. Robertson, C. E. et al. Negativity drives online news consumption. Nat. Hum. Behav. 7, 812–822 (2023).

    Article  Google Scholar 

  50. Zhang, M. et al. Negative news headlines are more attractive: negativity bias in online news reading and sharing. Curr. Psychol. 43, 30156–30169 (2024).

    Article  Google Scholar 

  51. Vlasceanu, M. et al. Addressing climate change with behavioral science: a global intervention tournament in 63 countries. Sci. Adv. 10, eadj5778 (2024).

    Article  CAS  Google Scholar 

  52. Maertens, R., Anseel, F. & van der Linden, S. Combatting climate change misinformation: evidence for longevity of inoculation and consensus messaging effects. J. Environ. Psychol. 70, 101455 (2020).

    Article  Google Scholar 

  53. Nyhan, B., Porter, E. & Wood, T. J. Time and skeptical opinion content erode the effects of science coverage on climate beliefs and attitudes. Proc. Natl Acad. Sci. USA 119, e2122069119 (2022).

    Article  CAS  Google Scholar 

  54. Dubey, A. et al. The Llama3 herd of models. Preprint at https://doi.org/10.48550/arXiv.2407.21783 (2024).

  55. Howe, P. D., Mildenberger, M., Marlon, J. R. & Leiserowitz, A. Geographic variation in opinions on climate change at state and local scales in the usa. Nat. Clim. Change 5, 596–603 (2015).

    Article  Google Scholar 

  56. Marlon, J. R. et al. Change in us state-level public opinion about climate change: 2008–2020. Environ. Res. Lett. 17, 124046 (2022).

    Article  Google Scholar 

  57. Capraro, V. et al. The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS Nexus 3, pgae191 (2024).

    Article  Google Scholar 

  58. Spitale, G., Biller-Andorno, N. & Germani, F. AI model GPT-3 (dis)informs us better than humans. Sci. Adv. 9, eadh1850 (2023).

    Article  Google Scholar 

  59. Kidd, C. & Birhane, A. How AI can distort human beliefs. Science 380, 1222–1223 (2023).

    Article  CAS  Google Scholar 

  60. Shin, S. Y. & Lee, J. The effect of deepfake video on news credibility and corrective influence of cost-based knowledge about deepfakes. Digit. Journal. 10, 412–432 (2022).

    Google Scholar 

  61. Simchon, A., Edwards, M. & Lewandowsky, S. The persuasive effects of political microtargeting in the age of generative artificial intelligence. Proc. Natl Acad. Sci. USA 3, 035 (2024).

    Google Scholar 

  62. Augenstein, I. et al. Factuality challenges in the era of large language models and opportunities for fact-checking. Nat. Mach. Intell. 6, 852–863 (2024).

    Article  Google Scholar 

  63. Costello, T. H., Pennycook, G. & Rand, D. G. Durably reducing conspiracy beliefs through dialogues with AI. Science 385, eadq1814 (2024).

    Article  CAS  Google Scholar 

  64. Bago, B. & Bonnefon, J.-F. Generative AI as a tool for truth. Science 385, 1164–1165 (2024).

    Article  CAS  Google Scholar 

  65. Tessler, M. H. et al. AI can help humans find common ground in democratic deliberation. Science 386, eadq2852 (2024).

    Article  CAS  Google Scholar 

  66. Dörr, K. N. Mapping the field of algorithmic journalism. Digit. Journal. 4, 700–722 (2016).

    Google Scholar 

  67. Diakopoulos, N. Automating the News: How Algorithms Are Rewriting the Media (Harvard Univ. Press, 2019).

  68. Cools, H. & Diakopoulos, N. Uses of generative AI in the newsroom: mapping journalists’ perceptions of perils and possibilities. Journal. Pract. 1–19 (2024).

  69. Guenther, L., Kunert, J. & Goodwin, B. ‘Away from this duty of chronicler and towards the unicorn’: how German science journalists assess their future with (generative) artificial intelligence. J. Sci. Commun. 24, A06 (2025).

    Article  Google Scholar 

  70. Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023).

    Article  Google Scholar 

  71. Nishal, S. & Diakopoulos, N. Envisioning the applications and implications of generative AI for news media. Preprint at https://doi.org/10.48550/arXiv.2402.18835 (2024).

  72. Nishal, S., Sinchai, J. & Diakopoulos, N. Understanding practices around computational news discovery tools in the domain of science journalism. Proc. ACM Hum. Comput. Interact. 8, 1–36 (2024).

    Article  Google Scholar 

  73. Ren, J., Zhao, Y., Vu, T., Liu, P. J. & Lakshminarayanan, B. In Proc. Machine Learning Research 49–64 (PMLR, 2023).

  74. Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://doi.org/10.48550/arXiv.2207.05221 (2022).

  75. Gomila, R. Logistic or linear? estimating causal effects of experimental treatments on binary outcomes using regression analysis. J. Exp. Psychol. Gen. 150, 700 (2021).

    Article  Google Scholar 

  76. News personalization. AsPredicted https://aspredicted.org/wfvn-c2tg.pdf (2025).

  77. Bago, B., Muller, P., Bonnefon, J.-F. Dataset and analysis for using generative AI to increase skeptics’ engagement with climate science. Zenodo https://doi.org/10.5281/zenodo.16755109 (2025).

Download references

Acknowledgements

J.F.B. acknowledges support from grant nos. ANR-23-IACL-0002, ANR-17-EURE-0010 and ANR-22-CE26-0014-01 and the research foundation TSE-Partnership. We gratefully acknowledge the help of Iyad Rahwan at the Center of Humans and Machines, Max Planck Institute for Human Development, for obtaining funding for data collection.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by B.B., J.F.B. and P.M., who also developed the methodology and conducted the investigation together. B.B. was responsible for curating the data, conducting the formal analysis and developing the experimental software. J.F.B. secured the funding for this research and created the visualizations. The original draft of the manuscript was written by B.B. and J.F.B., while all three authors participated in reviewing and editing the final manuscript.

Corresponding author

Correspondence to Bence Bago.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Carmen Atkins, Mike Schäfer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1–59, analyses and materials.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bago, B., Muller, P. & Bonnefon, JF. Using generative AI to increase sceptics’ engagement with climate science. Nat. Clim. Chang. (2025). https://doi.org/10.1038/s41558-025-02424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41558-025-02424-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing