Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synchronization of global peak river discharge since the 1980s

Subjects

Abstract

Riverine floods that occur simultaneously over multiple regions often lead to amplified societal and environmental impacts compared to individual events. However, the pattern and mechanisms governing the global interconnection of peak river discharge across spatially distant and proximate locations remain largely unexplored. Here, on the basis of a global annual peak discharge database from 4,407 observational hydrometric stations, we identify hubs for remotely linked discharge peaks spanning thousands of kilometres. We show increasing trends in the number of remotely linked watersheds and the total drainage area, pointing to amplified synchronization of global peak river discharge since the 1980s. Ocean–atmosphere oscillations, through the perturbation of both temperature and precipitation anomalies, dictate the global coupling pattern and temporal evolution of discharge peaks. Our findings highlight an emergent profile of global peak river flow in a warming climate that can benefit coordinated flood risk management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the global flood network.
Fig. 2: The changing pattern of the global flood network.
Fig. 3: Interannual variation of the global flood network.
Fig. 4: Key ocean–atmosphere oscillations drive remote peak discharge links.

Similar content being viewed by others

Data availability

The annual peak discharge dataset is available at https://www.bafg.de/GRDC/. The meteorological variables are available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=eqc and https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview. The monthly climate indices are available at https://www.esrl.noaa.gov/psd/data/climateindices/list/. The Land-Use Harmonization data are available at https://luh.umd.edu/. Version 1.3 of the Global Reservoir and Dam product is available at https://www.globaldamwatch.org/grand/.

Code availability

The source code for this study is available via Figshare at https://doi.org/10.6084/m9.figshare.26139493.v4 (ref. 50). The code is implemented in Python (version 3.8.8). Base maps are generated using the GeoPandas Python module with Natural Earth data (https://www.naturalearthdata.com/).

References

  1. Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Article  Google Scholar 

  2. Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596, 80–86 (2021).

    Article  CAS  Google Scholar 

  3. Kreibich, H. et al. The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86 (2022).

    Article  CAS  Google Scholar 

  4. Raymond, C. et al. Understanding and managing connected extreme events. Nat. Clim. Change 10, 611–621 (2020).

    Article  Google Scholar 

  5. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

    Article  Google Scholar 

  6. Europe’s floods top 2013 disaster bill according to Munich Re. news.com.au https://www.news.com.au/finance/europes-floods-top-2013-disaster-bill-according-to-munich-re/news-story/e7d8826d655a9a4a465211989750bace (2013).

  7. Gaupp, F., Hall, J., Hochrainer-Stigler, S. & Dadson, S. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Change 10, 54–57 (2019).

    Article  Google Scholar 

  8. Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2019).

    Article  Google Scholar 

  9. Financial Management of Flood Risk (OECD, Publishing, 2016).

  10. Zhang, S. et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Change 12, 1160–1167 (2022).

    Article  Google Scholar 

  11. Boers, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566, 373–377 (2019).

    Article  Google Scholar 

  12. Mondal, S., Mishra, K. A., Leung, R. & Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 14, 144 (2023).

    Article  CAS  Google Scholar 

  13. Su, Z., Meyerhenke, H. & Kurths, J. The climatic interdependence of extreme-rainfall events around the globe. Chaos 32, 043126 (2022).

    Article  Google Scholar 

  14. Ward, P. J. et al. Strong influence of El Nino Southern Oscillation on flood risk around the world. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).

    Article  CAS  Google Scholar 

  15. Steptoe, H., Jones, S. E. O. & Fox, H. Correlations between extreme atmospheric hazards and global teleconnections: implications for multihazard resilience. Rev. Geophys. 56, 50–78 (2018).

    Article  Google Scholar 

  16. Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    Article  CAS  Google Scholar 

  17. Blöschl, G. Flood generation: process patterns from the raindrop to the ocean. Hydrol. Earth Syst. Sci. 26, 2469–2480 (2022).

    Article  Google Scholar 

  18. Jiang, S., Tarasova, L., Yu, G. & Zscheischler, J. Compounding effects in flood drivers challenge estimates of extreme river floods. Sci. Adv. 10, eadl4005 (2024).

    Article  Google Scholar 

  19. Yang, L. et al. Climate more important for Chinese flood changes than reservoirs and land use. Geophys. Res. Lett. 48, e2021GL093061 (2021).

    Article  Google Scholar 

  20. Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Article  Google Scholar 

  21. Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article  Google Scholar 

  22. Han, J. et al. Streamflow seasonality in a snow-dwindling world. Nature 629, 1075–1081 (2024).

    Article  CAS  Google Scholar 

  23. Berghuijs, W. R., Allen, S. T., Harrigan, S. & Kirchner, J. W. Growing spatial scales of synchronous river flooding in Europe. Geophys. Res. Lett. 46, 1423–1428 (2019).

    Article  Google Scholar 

  24. Dai, P. & Nie, J. Robust expansion of extreme midlatitude storms under global warming. Geophys. Res. Lett. 49, e2022GL099007 (2022).

    Article  Google Scholar 

  25. Yang, Y., Yang, L., Chen, X., Wang, Q. & Tian, F. Climate leads to reversed latitudinal changes in Chinese flood peak timing. Earth’s Future 10, e2022EF002726 (2022).

    Article  Google Scholar 

  26. Richard, Y., Pohl, B. & Fauchereau, N. Influence of the Madden–Julian Oscillation on southern African summer rainfall. J. Clim. 20, 4227–4242 (2007).

    Article  Google Scholar 

  27. Du, D. et al. Increase in MJO predictability under global warming. Nat. Clim. Change 14, 68–74 (2023).

    Article  Google Scholar 

  28. Wang, J., He, J., Liu, X. & Wu, B. Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal. Chin. Sci. Bull. 54, 687–695 (2009).

    Article  Google Scholar 

  29. Xu, B. & Li, G. A potential seasonal predictor for summer rainfall over eastern China: Spring Eurasian snowmelt. J. Clim. 37, 1999–2012 (2024).

    Article  Google Scholar 

  30. McCabe, G. J. & Dettinger, M. D. Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeorol. 3, 13–25 (2002).

    Article  Google Scholar 

  31. Rogers, J. C. & Van Loon, H. The seesaw in winter temperatures between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon. Weather Rev. 107, 509–519 (1979).

    Article  Google Scholar 

  32. Beck, H. E. et al. Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrol. Earth Syst. Sci. 21, 2881–2903 (2017).

    Article  Google Scholar 

  33. Frasson, R. P. d. M., Schumann, G. J. P., Kettner, A. J., Brakenridge, G. R. & Krajewski, W. F. Will the Surface Water and Ocean Topography (SWOT) satellite mission observe floods? Geophys. Res. Lett. 46, 10435–10445 (2019).

    Article  Google Scholar 

  34. Yang, L., Wang, L., Li, X. & Gao, J. On the flood peak distributions over China. Hydrol. Earth Syst. Sci. 23, 5133–5149 (2019).

    Article  Google Scholar 

  35. Gudmundsson, L., Do, H. X., Leonard, M. & Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment. Earth Syst. Sci. Data 10, 787–804 (2018).

    Article  Google Scholar 

  36. Lehner, B. et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  37. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article  CAS  Google Scholar 

  38. Quian Quiroga, R., Kreuz, T. & Grassberger, P. Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E 66, 041904 (2002).

    Article  CAS  Google Scholar 

  39. Boyd, M. J. A storage-routing model relating drainage basin hydrology and geomorphology. Water Resour. Res. 14, 921–928 (1978).

    Article  Google Scholar 

  40. Villarini, G. On the seasonality of flooding across the continental United States. Adv. Water Res. 87, 80–91 (2016).

    Article  Google Scholar 

  41. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article  Google Scholar 

  42. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  43. Tarasova, L. et al. A process‐based framework to characterize and classify runoff events: The event typology of Germany. Water Resour. Res. 56, e2019WR026951 (2020).

    Article  Google Scholar 

  44. Kader, G. D. & Perry, M. Variability for categorical variables. J. Stat. Educ. 15, 2007 (2017).

    Google Scholar 

  45. Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  46. Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).

    Article  Google Scholar 

  47. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Use of the Information-Theoretic Approach 2nd edn (Springer, 2002).

  48. Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969).

    Article  Google Scholar 

  49. Draper, N. R. & Smith, H. Applied Regression Analysis (Wiley, 1998).

  50. Yang, Y. et al. Synchronization of global peak river discharge since the 1980s. Figshare https://doi.org/10.6084/m9.figshare.26139493.v4 (2024).

Download references

Acknowledgements

Y.Y., L.Y. and Q.W. are supported by the National Science Foundation of China (grant number 52379012), the Fundamental Research Funds for the Central Universities (grant number 0209-14380133), the ‘GeoX’ Interdisciplinary Project of the Frontiers Science Center for Critical Earth Material Cycling (grant number 20250204) and the Basic Research Program of Jiangsu Province (grant number BK20231541). The flood network in this paper is calculated on the computing facilities in the High-Performance Computing Center of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y.Y. and L.Y. Methodology: Y.Y., L.Y. and G.V. Investigation: Y.Y., L.Y., G.V. and F.Z. Visualization: Y.Y. and L.Y. Funding acquisition: L.Y. Project administration: L.Y. Supervision: L.Y. Writing (original draft): Y.Y. and L.Y. Writing (review and editing): all authors.

Corresponding author

Correspondence to Long Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Somnath Mondal, Nasser Najibi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, L., Villarini, G. et al. Synchronization of global peak river discharge since the 1980s. Nat. Clim. Chang. 15, 1084–1090 (2025). https://doi.org/10.1038/s41558-025-02427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02427-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing