Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A global horizon scan of issues impacting marine and coastal biodiversity conservation

Abstract

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5–10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The 15 horizon issues presented in thematic groups: ecosystem impacts, resource exploitation and new technologies.
Fig. 2: Stepwise process used to identify, score and present the 15 horizon issues likely to impact marine and coastal biodiversity conservation in the next 5–10 years.
Fig. 3: Median rank of each issue versus proportion of issues participants had previously heard of.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from figshare https://doi.org/10.6084/m9.figshare.19703485.v1. Source data are provided with this paper.

References

  1. Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    Article  PubMed  Google Scholar 

  2. Sutherland, W. J. & Woodroof, H. J. The need for environmental horizon scanning. Trends Ecol. Evol. 24, 523–527 (2009).

    Article  PubMed  Google Scholar 

  3. Sutherland, W. J. et al. Ten years on: a review of the first global conservation horizon scan. Trends Ecol. Evol. 34, 139–153 (2019).

    Article  PubMed  Google Scholar 

  4. Sutherland, W. J. et al. A horizon scan of global conservation issues for 2010. Trends Ecol. Evol. 25, 1–7 (2010).

    Article  PubMed  Google Scholar 

  5. Sutherland, W. J. et al. A horizon scan of global conservation issues for 2016. Trends Ecol. Evol. 31, 44–53 (2016).

    Article  PubMed  Google Scholar 

  6. Sutherland, W. J. et al. A horizon scanning assessment of current and potential future threats facing migratory shorebirds. Ibis 154, 663–679 (2012).

    Article  Google Scholar 

  7. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  8. Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Silva, L. G. M. et al. Mortality events resulting from Australia’s catastrophic fires threaten aquatic biota. Glob. Change Biol. 26, 5345–5350 (2020).

    Article  Google Scholar 

  10. Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18, 376–389 (2015).

    Article  Google Scholar 

  12. Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate related temperature stress. Glob. Change Biol. 26, 1367–1373 (2021).

    Article  Google Scholar 

  13. Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Change Biol. 27, 5547–5563 (2021).

    Article  CAS  Google Scholar 

  14. Stewart, B. D. et al. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 755, 143019 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Roberts, D. A. et al. Ocean acidification increases the toxicity of contaminated sediments. Glob. Change Biol. 19, 340–351 (2013).

    Article  Google Scholar 

  16. Hauton, C. et al. Identifying toxic impact of metals potentially released during deep-sea mining—a synthesis of the challenges to quantifying risk. Front. Mar. Sci. 4, 368 (2017).

  17. Chaudhary, C. et al. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime? Science 307, 1725–1726 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).

    Article  Google Scholar 

  22. Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Colombo, S. M. et al. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio 49, 865–880 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).

    Article  Google Scholar 

  25. Antacli, J. C. et al. Increase in unsaturated fatty acids in Antarctic phytoplankton under ocean warming and glacial melting scenarios. Sci. Total Environ. 790, 147879 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 18, 4132–4138 (2021).

    Article  CAS  Google Scholar 

  27. Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y. & Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 17, 467 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  28. Xu, N. et al. Marine-derived collagen as biomaterials for human health. Front. Nutr. 8, 702108 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Vieira, H., Leal, M. C. & Calado, R. Fifty shades of blue: how blue biotechnology is shaping the bioeconomy. Trends Biotechnol. 38, 940–943 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Ben-Hasan, A. et al. China’s fish maw demand and its implications for fisheries in source countries. Mar. Policy 132, 104696 (2021).

    Article  Google Scholar 

  31. Sadovy de Mitcheson, Y., To, A. W. L., Wong, N. W., Kwan, H. Y. & Bud, W. S. Emerging from the murk: threats, challenges and opportunities for the global swim bladder trade. Rev. Fish. Biol. Fish. 29, 809–835 (2019).

    Article  Google Scholar 

  32. Brownell, R. L. Jr et al. Bycatch in gillnet fisheries threatens critically endangered small cetaceans and other aquatic megafauna. Endang. Species Res. 40, 285–296 (2019).

    Article  Google Scholar 

  33. Webb, T. J., Vanden Berghe, E. & O’Dor, R. K. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 31 (2016).

    Google Scholar 

  35. Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Roberts, C. M., Hawkins, J. P., Hindle, K., Wilson, R. W. & O’Leary, B. C. Entering the Twilight Zone: The Ecological Role and Importance of Mesopelagic Fishes (Blue Marine Foundation, 2020)

  37. Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M. & Boyd, P. W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176, 102125 (2019).

    Article  Google Scholar 

  38. Levin, L. A. et al. Climate change considerations are fundamental to management of deep‐sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).

    Article  Google Scholar 

  39. Li, Z. et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14, 3152–3159 (2021).

    Article  CAS  Google Scholar 

  40. Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar. Drugs 17, 656 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  41. Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P.R. et al.) 437–550 (IPCC, 2019).

  42. Christie, N., Smyth, K., Barnes, R. & Elliott, M. Co-location of activities and designations: a means of solving or creating problems in marine spatial planning? Mar. Pol. 43, 254–261 (2014).

    Article  Google Scholar 

  43. Mayer-Pinto, M., Dafforn, K. A. & Johnston, E. L. A decision framework for coastal infrastructure to optimize biotic resistance and resilience in a changing climate. BioScience 69, 833–843 (2019).

    Article  Google Scholar 

  44. Wang, C. M. & Wang, B. T. in ICSCEA 2019 (eds Reddy, J. N. et al.) 3–29 (Springer, 2020).

  45. Ross, C. T. F. & McCullough, R. R. Conceptual design of a floating island city. J. Ocean Technol. 5, 120–121 (2010).

    Google Scholar 

  46. Dong, Y.-w, Huang, X.-w, Wang, W., Li, Y. & Wang, J. The marine ‘great wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Divers. Distrib. 22, 731–744 (2016).

    Article  Google Scholar 

  47. Flikkema, M. M. B., Lin, F.-Y., van der Plank, P. P. J., Koning, J. & Waals, O. Legal issues for artificial floating islands. Front. Mar. Sci. 8, 619462 (2021).

    Article  Google Scholar 

  48. Richir, J., Bray, S., McAleese, T. & Watson, G. J. Three decades of trace element sediment contamination: the mining of governmental databases and the need to address hidden sources for clean and healthy seas. Environ. Int. 149, 106362 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).

    Article  CAS  Google Scholar 

  50. Li, W., Lee, S. & Manthiram, A. High‐Nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries. Adv. Mater. 32, 2002718 (2020).

    Article  CAS  Google Scholar 

  51. Ghaffarivardavagh, R., Afzal, S. S., Rodriguez, O. & Adib, F. in SIGCOMM ’20 Proc. 19th ACM Workshop on Hot Topics in Networks 125–131 (Association for Computing Machinery, 2020).

  52. Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).

    Article  Google Scholar 

  53. Davies, T. E. et al. Tracking data and the conservation of the high seas: opportunities and challenges. J. Appl. Ecol. 58, 2703–2710 (2021).

  54. Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. https://doi.org/10.1089/soro.2020.0011 (2021).

  55. Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Philamore, H., Ieropoulos, I., Stinchcombe, A. & Rossiter, J. Toward energetically autonomous foraging soft robots. Soft Robot. 3, 186–197 (2016).

    Article  Google Scholar 

  57. Manfra, L. et al. Biodegradable polymers: a real opportunity to solve marine plastic pollution? J. Hazard. Mater. 416, 125763 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, D., Kim, H. & An, Y. J. Effects of synthetic and natural microfibers on Daphnia magna: are they dependent on microfiber type? Aquat. Toxicol. 240, 105968 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Degli-Innocenti, F., Bellia, G., Tosin, M., Kapanen, A. & Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 73, 101–106 (2001).

    Article  CAS  Google Scholar 

  60. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

  61. Short, R. E. et al. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2, 733–741 (2021).

    Article  Google Scholar 

  62. Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).

    Article  PubMed  Google Scholar 

  65. Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Jefferson, R. L., McKinley, E., Griffin, H., Nimmo, A. & Fletcher, S. Public perceptions of the ocean: lessons for marine conservation from a global research review. Front. Mar. Sci. 8, 711245 (2021).

  67. Potts, T., Pita, C., O’Higgins, T. & Mee, L. Who cares? European attitudes towards marine and coastal environments. Mar. Pol. 72, 59–66 (2016).

    Article  Google Scholar 

  68. Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).

    Article  Google Scholar 

  69. Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).

    Article  Google Scholar 

  70. Zheng, Y. & Walsham, G. Inequality of what? An intersectional approach to digital inequality under Covid-19. Inf. Organ. 31, 100341 (2021).

    Article  Google Scholar 

  71. Blythe, J. L., Armitage, D., Bennett, N. J., Silver, J. J. & Song, A. M. The politics of ocean governance transformations. Front. Mar. Sci. 8, 634718 (2021).

    Article  Google Scholar 

  72. Brennan, C., Ashley, M. & Molloy, O. A system dynamics approach to increasing ocean literacy. Front. Mar. Sci. 6, 360 (2019).

    Article  Google Scholar 

  73. Stoll-Kleemann, S. Feasible options for behavior change toward more effective ocean literacy: a systematic review. Front. Mar. Sci. 6, 273 (2019).

    Article  Google Scholar 

  74. Bennett, N. J. et al. Advancing social equity in and through marine conservation. Front. Mar. Sci. 8, 711538 (2021).

    Article  Google Scholar 

  75. Short, R. E. et al. Review of the evidence for oceans and human health relationships in Europe: a systematic map. Environ. Int. 146, 106275 (2021).

    Article  PubMed  Google Scholar 

  76. Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).

    Article  Google Scholar 

  77. Sutherland, W. J. et al. A 2021 horizon scan of emerging global biological conservation issues. Trends Ecol. Evol. 36, 87–97 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This Marine and Coastal Horizon Scan was funded by Oceankind. S.N.R.B. is supported by EcoStar (DM048) and Cefas (My time). R.C. acknowledges FCT/MCTES for the financial support to CESAM (UIDP/50017/2020, UIDB/50017/2020, LA/P/0094/2020) through national funds. O.D. is supported by CSIC Uruguay and Inter-American Institute for Global Change Research. J.E.H.-R. is supported by the Whitten Lectureship in Marine Biology. S.A.K. is supported by a Natural Environment Research Council grant (NE/S00050X/1). P.I.M. is supported by an Australian Research Council Discovery Grant (DP200100575). D.M.P. is supported by the Marine Alliance for Science and Technology for Scotland (MASTS). A.R.P. is supported by the Inter-American Institute for Global Change Research. W.J.S. is funded by Arcadia. A.T. is supported by Oceankind. M.Y. is supported by the Deep Ocean Stewardship Initiative and bioDISCOVERY. We are grateful to everyone who submitted ideas to the exercise and the following who are not authors but who suggested a topic that made the final list: R. Brown (colocation of marine activities), N. Graham and C. Hicks (altered nutritional content of fish), A. Thornton (soft robotics), A. Vincent (fish swim bladders) and T. Webb (mesopelagic fisheries).

Author information

Authors and Affiliations

Authors

Contributions

J.E.H.-R. and A.T. contributed equally to the manuscript. J.E.H.-R., A.T. and W.J.S. devised, organized and led the Marine and Coastal Horizon Scan. D.J.A., S.N.R.B., I.M.C., M.P.D., B.J.G., S.A.K., E.M. and L.S.P. formed the core team and are listed alphabetically in the author list. All other authors, R.C., O.D., S.D., E.L.J., H.K., P.I.M., A.M., A.W.N.M., D.O.O., D.M.P., A.R.P., A.J.R., I.R.S., P.V.R.S., B.D.S., P.M.T., G.J.W., T.A.W. and M.Y. are listed alphabetically. All authors contributed to and participated in the process and all were involved in writing and editing the manuscript.

Corresponding authors

Correspondence to James E. Herbert-Read or Ann Thornton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Camille Mellin, Prue Addison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 3

Issue number, final rank and proportion heard of for each issue in round 1 and round 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbert-Read, J.E., Thornton, A., Amon, D.J. et al. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nat Ecol Evol 6, 1262–1270 (2022). https://doi.org/10.1038/s41559-022-01812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-022-01812-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene