Abstract
Eastern Africa preserves the most complete record of human evolution anywhere in the world but we have little knowledge of how long-term biogeographic dynamics in the region influenced hominin diversity and distributions. Here, we use spatial beta diversity analyses of mammal fossil records from the East African Rift System to reveal long-term biotic homogenization (increasing compositional similarity of faunas) over the last 6 Myr. Late Miocene and Pliocene faunas (~6–3 million years ago (Ma)) were largely composed of endemic species, with the shift towards biotic homogenization after ~3 Ma being driven by the loss of endemic species across functional groups and a growing number of shared grazing species. This major biogeographic transition closely tracks the regional expansion of grass-dominated ecosystems. Although grazers exhibit low beta diversity in open environments of the Early Pleistocene, the high beta diversity of Mio-Pliocene browsers and frugivores occurred in the context of extensive woody vegetation. We identify other key aspects of the Late Cenozoic biogeographic development of eastern Africa, their likely drivers and place the hominin fossil record in this context. Because hominins were undoubtedly influenced by many of the same factors as other eastern African mammals, this provides a new perspective on the links between environmental and human evolutionary histories.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All data generated or analysed during this study are provided on Zenodo via https://zenodo.org/records/11187857 (ref. 85).
Code availability
All code used for main text analyses is provided on Zenodo via https://zenodo.org/records/11187857 (ref. 85).
References
Faith, J. T. et al. Rethinking the ecological drivers of hominin evolution. Trends Ecol. Evol. 36, 797–807 (2021).
Faith, J. T., Rowan, J. & Du, A. Late Cenozoic faunal and ecological change in Africa. Ann. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-031621-114105 (2024).
Vrba, E. S. in Ancestors: The Hard Evidence (ed. Delson, E.) 63–71 (Alan R. Liss, 1985).
Vrba, E. S. Mammals as a key to evolutionary theory. J. Mammal. 73, 1–28 (1992).
Vrba, E. S. in Paleoclimate and Evolution, with Emphasis on Human Origins (eds Vrba, E. S. et al.) 385–424 (Yale Univ. Press, 1995).
Behrensmeyer, A. K., Todd, N. E., Potts, R. & McBrinn, G. E. Late Pliocene faunal turnover in the Turkana basin, Kenya and Ethiopia. Science 278, 1589–1594 (1997).
Bibi, F. & Kiessling, W. Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa. Proc. Natl Acad. Sci. USA 112, 10623–10628 (2015).
Du, A. & Alemseged, Z. Diversity analysis of Plio-Pleistocene large mammal communities in the Omo-Turkana Basin, eastern Africa. J. Hum. Evol. 124, 25–39 (2018).
Cohen, A. S., Du, A., Rowan, J., Yost, C. L., Billingsley, A. L. et al. Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution. Proc. Natl Acad. Sci. USA 119, e2107393119 (2022).
Foley, R. A. Evolutionary geography and the Afrotropical model of hominin evolution. Bull. Mem. Soc. Anthropol. Paris 30, 17–31 (2018).
Joordens, J. C., Feibel, C. S., Vonhof, H. B., Schulp, A. S. & Kroon, D. Relevance of the eastern African coastal forest for early hominin biogeography. J. Hum. Evol. 131, 176–202 (2019).
Strait, D. S. in The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 183–191 (Springer, 2013).
Villaseñor, A., Bobe, R. & Behrensmeyer, A. K. Middle Pliocene hominin distribution patterns in Eastern Africa. J. Hum. Evol. 147, 102856 (2020).
Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl Acad. Sci. USA 116, 21478–21483 (2019).
Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Whittaker, R. H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30, 280–338 (1960).
Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).
Barton, P. S. et al. The spatial scaling of beta diversity. Glob. Ecol. Biogeogr. 22, 639–647 (2013).
Badgley, C., Smiley, T. M. & Finarelli, J. A. Great Basin mammal diversity in relation to landscape history. J. Mammal. 95, 1090–1106 (2014).
Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).
Benson, R. B., Butler, R., Close, R. A., Saupe, E. & Rabosky, D. L. Biodiversity across space and time in the fossil record. Curr. Biol. 31, R1225–R1236 (2021).
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & Demenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).
Bowman, J., Jaeger, J. A. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, 2049–2055 (2002).
Santini, L. et al. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24, 181–186 (2013).
Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).
Baselga, A., Jiménez-Valverde, A. & Niccolini, G. A multiple-site similarity measure independent of richness. Biol. Lett. 3, 642–645 (2007).
Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots (eds Zachos, F. & Habel, J.) 3–22 (Springer, 2011).
Faurby, S. & Svenning, J. C. Historic and prehistoric human‐driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).
Lönnberg, E. The Development and Distribution of the African Fauna in Connection with and Depending Upon Climatic Changes (Vetenskapsakademien, 1929).
Moreau, R. E. Pleistocene climatic changes and the distribution of life in East Africa. J. Ecol. 21, 415–435 (1933).
Wayland, E. J. Desert versus forest in Eastern Africa. Geograph. J. 96, 329–340 (1940).
Lorenzen, E. D., Heller, R. & Siegismund, H. R. Comparative phylogeography of African savannah ungulates. Mol. Ecol. 21, 3656–3670 (2012).
Morley, R. J. & Kingdon, J. Africa’s environmental and climatic past. Mamm. Afr. 1, 43–56 (2013).
Rowan, J., Kamilar, J. M., Beaudrot, L. & Reed, K. E. Strong influence of palaeoclimate on the structure of modern African mammal communities. Proc. R. Soc. B 283, 20161207 (2016).
Rowan, J. et al. Geographically divergent evolutionary and ecological legacies shape mammal biodiversity in the global tropics and subtropics. Proc. Natl Acad. Sci. USA 117, 1559–1565 (2020).
Malhi, Y. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42, 77–104 (2017).
Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl Acad. Sci. USA 117, 7871–7878 (2020).
McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).
Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).
Reed, K. E. Early hominid evolution and ecological change through the African Plio-Pleistocene. J. Hum. Evol. 32, 289–322 (1997).
Jolly, C. J. The seed-eaters: a new model of hominid differentiation based on a baboon analogy. Man 5, 5–26 (1970).
Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).
Bell, R. H. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).
Gwynne, M. D. & Bell, R. H. V. Selection of vegetation components by grazing ungulates in the Serengeti National Park. Nature 220, 390–393 (1968).
Bibi, F. et al. Paleoecology of the Serengeti during the Oldowan–Acheulean transition at Olduvai Gorge, Tanzania: the mammal and fish evidence. J. Hum. Evol. 120, 48–75 (2018).
Beaudrot, L. H. & Marshall, A. J. Primate communities are structured more by dispersal limitation than by niches. J. Anim. Ecol. 80, 332–341 (2011).
Beaudrot, L., Kamilar, J. M., Marshall, A. J. & Reed, K. E. African primate assemblages exhibit a latitudinal gradient in dispersal limitation. Int. J. Primatol. 35, 1088–1104 (2014).
Grabowski, M., Hatala, K. G., Jungers, W. L. & Richmond, B. G. Body mass estimates of hominin fossils and the evolution of human body size. J. Hum. Evol. 85, 75–93 (2015).
Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).
White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P. & Suwa, G. Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proc. Natl Acad. Sci. USA 112, 4877–4884 (2015).
White, T. D. et al. Asa Issie, Aramis and the origin of Australopithecus. Nature 440, 883–889 (2006).
Green, D. J. & Alemseged, Z. Australopithecus afarensis scapular ontogeny, function and the role of climbing in human evolution. Science 338, 514–517 (2012).
Haile-Selassie, Y., Melillo, S. M. & Su, D. F. The Pliocene hominin diversity conundrum: do more fossils mean less clarity? Proc. Natl Acad. Sci. USA 113, 6364–6371 (2016).
Wood, B. & K. Boyle, E. Hominin taxic diversity: fact or fantasy? Am. J. Phys. Anthropol. 159, 37–78 (2016).
Leakey, M. G. et al. New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410, 433–440 (2001).
Haile-Selassie, Y. et al. New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature 521, 483–488 (2015).
Haile-Selassie, Y. et al. A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations. Nature 483, 565–569 (2012).
Su, D. F. & Haile-Selassie, Y. Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity. J. Hum. Evol. 163, 103076 (2022).
Alemseged, Z. Reappraising the palaeobiology of Australopithecus. Nature 617, 45–54 (2023).
White, T. Early hominids—diversity or distortion? Science 299, 1994–1997 (2003).
Langergraber, K. E., Prüfer, K., Rowney, C., Boesch, C., Crockford, C. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012).
Boisserie, J. R. Hippopotamidae (Cetartiodactyla, Hippopotamoidea) from Kanapoi, Kenya and the taxonomic status of the late early Pliocene hippopotamids from the Turkana Basin. J. Hum. Evol. 140, 102377 (2020).
Harcourt, A. H. & Wood, M. A. Rivers as barriers to primate distributions in Africa. Int. J. Primatol. 33, 168–183 (2012).
Anthony, N. M. et al. The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa. Proc. Natl Acad. Sci. USA 104, 20432–20436 (2007).
Takemoto, H., Kawamoto, Y. & Furuichi, T. How did bonobos come to range south of the Congo River? Reconsideration of the divergence of Pan paniscus from other Pan populations. Evol. Anthropol. 24, 170–184 (2015).
Boisserie, J. R., Fisher, R. E., Lihoreau, F. & Weston, E. M. Evolving between land and water: key questions on the emergence and history of the Hippopotamidae (Hippopotamoidea, Cetancodonta, Cetartiodactyla). Biol. Rev. 86, 601–625 (2011).
Feibel, C. S. A geological history of the Turkana Basin. Evol. Anthropol. 20, 206–216 (2011).
Pik, R., Marty, B., Carignan, J., Yirgu, G. & Ayalew, T. Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography. Geology 36, 167–170 (2008).
Richter, M. J. et al. Controls on asymmetric rift dynamics: numerical modeling of strain localization and fault evolution in the Kenya Rift. Tectonics 40, e2020TC006553 (2021).
Spiegel, C., Kohn, B. P., Belton, D. X. & Gleadow, A. J. Morphotectonic evolution of the central Kenya rift flanks: implications for late Cenozoic environmental change in East Africa. Geology 35, 427–430 (2007).
Wichura, H., Bousquet, R., Oberhänsli, R., Strecker, M. R. & Trauth, M. H. Evidence for middle Miocene uplift of the East African Plateau. Geology 38, 543–546 (2010).
Corti, G. Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth Sci. Rev. 96, 1–53 (2009).
Ebinger, C. Continental break-up: the East African perspective. Astron. Geophys. 46, 2–16 (2005).
Antón, S. C., Leonard, W. R. & Robertson, M. L. An ecomorphological model of the initial hominid dispersal from Africa. J. Hum. Evol. 43, 773–785 (2002).
Antón, S. C., Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).
Wynn, J. G. et al. Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proc. Natl Acad. Sci. USA 117, 21978–21984 (2020).
Wood, B. & Constantino, P. Paranthropus boisei: fifty years of evidence and analysis. Am. J. Phys. Anthropol. 134, 106–132 (2007).
Rabenold, D. & Pearson, O. M. Abrasive, silica phytoliths and the evolution of thick molar enamel in primates, with implications for the diet of Paranthropus boisei. PLoS ONE 6, e28379 (2011).
Stewart, K. M. Environmental change and hominin exploitation of C4-based resources in wetland/savanna mosaics. J. Hum. Evol. 77, 1–16 (2014).
O’Brien, K., Hebdon, N. & Faith, J. T. Paleoecological evidence for environmental specialization in Paranthropus boisei compared to early Homo. J. Hum. Evol. 177, 103325 (2023).
Lüdecke, T. et al. Dietary versatility of Early Pleistocene hominins. Proc. Natl Acad. Sci. USA 115, 13330–13335 (2018).
Bengtson, P. Open nomenclature. Palaeontology 31, 223–227 (1988).
Rowan, J. Data and code for Rowan et al. "Long-term biotic homogenization in the East African Rift System over the last 6 Myr of hominin evolution". Zenodo https://doi.org/10.5281/zenodo.11187857 (2024).
Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).
Wessel, P. et al. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019).
Acknowledgements
This study was funded by NSF grants BCS 1551799 (to J.M.K.), BCS 1551810 (to K.E.R.) and a Darwin Postdoctoral Fellowship at the University of Massachusetts Amherst (to J.R.). A.D. thanks Colorado State University Vice President for Research office for funding. I.A.L. acknowledges funding from Ministerio de Ciencia e Innovación de España under grant no. RYC2021-034991-I, funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR. We thank T. M. Smiley and K. T. Uno for feedback, and C. M. Rowan for discussion of EARS tectonic evolution. C. M. Rowan helped to generate the map in Fig. 1.
Author information
Authors and Affiliations
Contributions
J.R. designed the research and compiled the data. J.R. and A.D. analysed the data. J.R., A.D., E.J.L., J.T.F., L.B., C.J.C., J.C.J, I.A.L., E.M.L., I.E.S, K.E.R. and J.M.K. contributed to the interpretation of results. J.R. wrote the manuscript with input from all authors. J.M.K. and K.E.R. secured the primary funding for this study with contributions from L.B.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Faysal Bibi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Overview of analytical workflow used to generate main text results.
Main text (Figs. 2–4 and generated values reported in Supplementary Dataset 1) and sensitivity analyses (results reported in Extended Data Figs. 2–5, Supplementary Table 1 and generated values reported in Supplementary Dataset 1) are shown. Each step of the analysis is outlined, with schematic data plots illustrating examples of where the results of each analytical step are presented.
Extended Data Fig. 2 Sensitivity analysis for time bin starting age.
a) Our main text analyses of multisite Simpson dissimilarity (βSIM) used 500-kyr time bins starting at 6 Ma (6-5.5 Ma, 5.5-5 Ma…), but shifting the bin start age by 100-kyr increments (6-5.5 Ma, 5.9-5.4 Ma, 5.8-5.3 Ma, 5.7-5.2 Ma, 5.6-5.1 Ma) does not change the overall pattern. b) Temporal trend in multisite Simpson dissimilarity (βSIM) for eastern African mammal species over the last 6 Myr using our main text dataset (PA Matrix v1) and alternate versions of the dataset that with different treatments of open nomenclature; all four presence-absence matrices are included in Supplementary Dataset 1.
Extended Data Fig. 3 Raw sampling of the East African Rift System fossil record based on PA Matrix v1.
Measures include the number of sites per time bin, number of species per time bin and the average number of species per site by time bin.
Extended Data Fig. 4 Multisite Simpson dissimilarity (βSIM) in relation to sampling measures.
Scatterplots of our multisite Simpson dissimilarity (βSIM) for the overall East African Rift System trend by (a) number of species per time bin, (b) number of sites per time bin and (c) the average number of species per site by time bin. Correlations were assessed with a linear model using the lm() function in R.
Extended Data Fig. 5 Multisite Simpson dissimilarity (βSIM) in relation to sampling measures by functional group.
Scatterplots of our multisite Simpson dissimilarity (βSIM) for each diet and body size class functional group by number of (a) species per time bin, (b) number of sites per time bin and (c) the average number of species per site by time bin. All correlations, except for number of species for s1 taxa (see SI text) are weak and non-significant (see Supplementary Table 1).
Supplementary information
Supplementary Information
Supplementary Discussion and Table 1.
Supplementary Code
R code used for analyses.
Supplementary Data
Dataset containing all raw and generated values for analyses.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rowan, J., Du, A., Lundgren, E.J. et al. Long-term biotic homogenization in the East African Rift System over the last 6 million years of hominin evolution. Nat Ecol Evol 8, 1751–1759 (2024). https://doi.org/10.1038/s41559-024-02462-0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41559-024-02462-0