Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anthropogenic land consolidation intensifies zoonotic host diversity loss and disease transmission in human habitats

Abstract

Anthropogenic land-use change is an important driver of global biodiversity loss and threatens public health through biological interactions. Understanding these landscape–ecological effects at local scales will help achieve the United Nations Sustainable Development Goals by balancing urbanization, biodiversity and the spread of infectious diseases. Here, we address this knowledge gap by analysing a 43-year-long monthly dataset (1980–2022) of synanthropic rodents in Central China during intensive land-use change. We observed a notable increase in the mean patch size, coinciding with a substantial change in rodent community composition and a marked decline in rodent diversity; eight of the nine local rodent species experienced near-extirpation. Our analysis reveals that these irregular species replacements can be attributed to the effect of land consolidation on species competition among rodents, favouring striped field mice, a critical reservoir host of Hantaan virus (HTNV). Consequently, land consolidation has facilitated the proliferation of striped field mice and increased the prevalence of HTNV among them. This study highlights the importance of considering both direct and indirect effects of anthropogenic activities in the management of biodiversity and public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed dynamics of rodent diversity, community composition and HTNV prevalence among striped field mice, 1980–2022, the Hu region, China.
Fig. 2: Detecting interspecific causality in rodent population dynamics.
Fig. 3: Associations between land consolidation and rodent population dynamics.
Fig. 4: Model simulations of the three-species dynamic model compared to empirical observations and parameter estimates from the three-species dynamic model.
Fig. 5: Results of the nonlinear transmission model of HTNV among striped field mice.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Raw data are not publicly available and are protected due to confidentiality agreements, which were used under license for the current study but are available upon reasonable request to the corresponding author and with permission from the data provider (H.T.). The request will be responded to within 2 weeks.

Code availability

Code files are available via GitHub at https://github.com/huaiyutian/Hantaan-virus.

References

  1. Wiens, J. A., Stenseth, N. C., Vanhorne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).

    Article  Google Scholar 

  2. Global Indicator Framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development (United Nations, 2020).

  3. Seto, K. C. & Pandey, B. Urban land use: central to building a sustainable future. One Earth 1, 168–170 (2019).

    Article  Google Scholar 

  4. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).

    Article  PubMed  Google Scholar 

  6. Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).

    Article  PubMed  Google Scholar 

  7. Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Keesing, F. & Ostfeld, R. S. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc. Natl Acad. Sci. USA 118, e2023540118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reynolds, J. D. in Macroecology Life Histories and Extinction Risk (ed. Blackburn, T. M.) 195–217 (Blackwell Publishing, 2003).

  11. Ostfeld, R. S. & Keesing, F. Species that can make us ill thrive in human habitats. Nature 584, 346–347 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Essl, F. et al. Distribution patterns, range size and niche breadth of Austrian endemic plants. Biol. Conserv. 142, 2547–2558 (2009).

    Article  Google Scholar 

  13. Kotiaho, J. S., Kaitala, V., Komonen, A. & Päivinen, J. Predicting the risk of extinction from shared ecological characteristics. Proc. Natl Acad. Sci. USA 102, 1963–1967 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saupe, E. E. et al. Niche breadth and geographic range size as determinants of species survival on geological time scales. Glob. Ecol. Biogeogr. 24, 1159–1169 (2015).

    Article  Google Scholar 

  15. Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B. 272, 2305–2311 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Walker, J. S. Resource use and rarity among frugivorous birds in a tropical rain forest on Sulawesi. Biol. Conserv. 130, 60–69 (2006).

    Article  Google Scholar 

  17. White, R. L. & Bennett, P. M. Elevational distribution and extinction risk in birds. PLoS ONE 10, e0121849 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liang, C. et al. Taxonomic, phylogenetic and functional homogenization of bird communities due to land use change. Biol. Conserv. 236, 37–43 (2019).

    Article  Google Scholar 

  19. Colléony, A. & Shwartz, A. When the winners are the losers: invasive alien bird species outcompete the native winners in the biotic homogenization process. Biol. Conserv. 241, 108314 (2020).

    Article  Google Scholar 

  20. Safi, K. & Kerth, G. A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv. Biol. 18, 1293–1303 (2004).

    Article  Google Scholar 

  21. Boyles, J. G. & Storm, J. J. The perils of picky eating: dietary breadth is related to extinction risk in insectivorous bats. PLoS ONE 2, e672 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Olden, J. D. Biotic homogenization: a new research agenda for conservation biogeography. J. Biogeogr. 33, 2027–2039 (2006).

    Article  Google Scholar 

  24. Olden, J. D. & Rooney, T. P. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeogr. 15, 113–120 (2006).

    Article  Google Scholar 

  25. Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Article  Google Scholar 

  26. Li, D. et al. Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proc. R. Soc. B. 287, 20200777 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. The Sustainable Development Goals Report 2022 (UN DESA, 2022).

  35. Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article  Google Scholar 

  36. Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142 (2006).

    Article  PubMed  Google Scholar 

  37. Zhou, Y., Li, Y. & Xu, C. Land consolidation and rural revitalization in China: mechanisms and paths. Land Use Policy 91, 104379 (2020).

    Article  Google Scholar 

  38. Tian, H. Y. et al. Urbanization prolongs hantavirus epidemics in cities. Proc. Natl Acad. Sci. USA 115, 4707–4712 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Y., Han, G., Zhao, M. & Chang, S. X. Spatial vegetation patterns as early signs of desertification: a case study of a desert steppe in Inner Mongolia, China. Landsc. Ecol. 25, 1519–1527 (2010).

    Article  Google Scholar 

  40. Uchida, K. & Ushimaru, A. Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecol. Monogr. 84, 637–658 (2014).

    Article  Google Scholar 

  41. Maskell, L. C. et al. Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of high nature value farming. Biol. Conserv. 231, 30–38 (2019).

    Article  Google Scholar 

  42. Denac, K. & Kmecl, P. Land consolidation negatively affects farmland bird diversity and conservation value. J. Nat. Conserv. 59, 125934 (2021).

    Article  Google Scholar 

  43. McGarigal, K. & Cushman, S. A. Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol. Appl. 12, 335–345 (2002).

    Article  Google Scholar 

  44. Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human–animal interface in Central China are controlled by temperature and rainfall. Proc. Natl Acad. Sci. USA 114, 8041–8046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang, L. Z. et al. Reservoir host expansion of hantavirus, China. Emerg. Infect. Dis. 21, 170–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article  Google Scholar 

  47. Pielou, E. C. Shannon’s formula as a measure of specific diversity: its use and misuse. Am. Nat. 100, 463–465 (1966).

    Article  Google Scholar 

  48. Liu, Y., Yang, R. & Li, Y. Potential of land consolidation of hollowed villages under different urbanization scenarios in China. J. Geogr. Sci. 23, 503–512 (2013).

    Article  Google Scholar 

  49. Thakkar, J.J. in Structural Equation Modelling (ed. Kacprzyk, J.) 91–99 (Springer, 2020).

  50. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338, 496–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Gasparrini, A. Modeling exposure–lag–response associations with distributed lag non‐linear models. Stat. Med. 33, 881–899 (2014).

    Article  PubMed  Google Scholar 

  52. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics (Cambridge Univ. Press, 1998).

  53. Shilova, S. A. & Tchabovsky, A. V. Population response of rodents to control with rodenticides. Curr. Zool. 55, 81–91 (2009).

    Article  CAS  Google Scholar 

  54. Koelle, K. & Pascual, M. Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera. Am. Nat. 163, 901–913 (2004).

    Article  PubMed  Google Scholar 

  55. Koelle, K., Rodó, X., Pascual, M., Yunus, M. & Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Benincà, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).

    Article  PubMed  Google Scholar 

  57. Benincà, E., Ballantine, B., Ellner, S. P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl Acad. Sci. USA 112, 6389–6394 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gravinatti, M. L., Barbosa, C. M., Soares, R. M. & Gregori, F. Synanthropic rodents as virus reservoirs and transmitters. Rev. Soc. Bras. Med. Trop. 53, e20190486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sluydts, V., Davis, S., Mercelis, S. & Leirs, H. Comparison of multimammate mouse (Mastomys natalensis) demography in monoculture and mosaic agricultural habitat: implications for pest management. Crop Prot. 28, 647–654 (2009).

    Article  Google Scholar 

  60. Mulungu, L. & Lopa, H. Comparative study of population dynamics and breeding patterns of Mastomys natalensis in system rice intensification and conventional rice production in irrigated rice ecosystems in Tanzania. J. Rice Res. 4, 161 (2016).

  61. Li, J., Liu, Q., Yang, T. & Wang, C. A three year monitoring program of countrywide commensal rodent infestation in some towns and rural areas of China. Chin. J. Vec. Biol. Contr. 4, 276–281 (1988).

    Google Scholar 

  62. Zhang, M., Wang, Y., Li, B., Guo, C. & Chen, A. Effects of chemical rodent control on rodent community structure in the Yangtze River Basin. Acta Ecol. Sin. 2, 320–329 (2003).

    Google Scholar 

  63. Loreau, M. et al. Do not downplay biodiversity loss. Nature 601, E27–E28 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Dammhahn, M., Mazza, V., Schirmer, A., Göttsche, C. & Eccard, J. A. Of city and village mice: behavioural adjustments of striped field mice to urban environments. Sci. Rep. 10, 13056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tulis, F. et al. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecol. 43, 753 (2016).

    Google Scholar 

  66. Shochat, E., Lerman, S. B., Katti, M. & Lewis, D. B. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: field experiments with artificial food patches. Am. Nat. 164, 232–243 (2004).

    Article  PubMed  Google Scholar 

  67. Petren, K. & Case, T. J. An experimental demonstration of exploitation competition in an ongoing invasion. Ecology 77, 118–132 (1996).

    Article  Google Scholar 

  68. Dizney, L. J. & Ruedas, L. A. Increased host species diversity and decreased prevalence of Sin Nombre virus. Emerg. Infect. Dis. 15, 1012 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dearing, M. D., Clay, C., Lehmer, E. & Dizney, L. The roles of community diversity and contact rates on pathogen prevalence. J. Mammal. 96, 29–36 (2015).

    Article  Google Scholar 

  70. Prist, P. R. et al. Landscape, environmental and social predictors of Hantavirus risk in São Paulo, Brazil. PLoS ONE 11, e0163459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Prist, P. R., D´ Andrea, P. S. & Metzger, J. P. Landscape, climate and hantavirus cardiopulmonary syndrome outbreaks. Ecohealth 14, 614–629 (2017).

    Article  PubMed  Google Scholar 

  72. Shaanxi Statistical Yearbook 2010 (China Statistics Press, 2010).

  73. Crecente, R., Alvarez, C. & Fra, U. Economic, social and environmental impact of land consolidation in Galicia. Land Use Policy 19, 135–147 (2002).

    Article  Google Scholar 

  74. Pašakarnis, G. & Maliene, V. Towards sustainable rural development in Central and Eastern Europe: applying land consolidation. Land Use Policy 27, 545–549 (2010).

    Article  Google Scholar 

  75. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

  76. Park, J., Smith, C., Sugihara, G. & Deyle, E. rEDM: Empirical dynamic modeling (‘EDM’). R package version 1.9.1 https://CRAN.R-project.org/package=rEDM (2021).

  77. R Core Team A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  78. Kareiva, P. Finding and losing host plants by Phyllotreta: patch size and surrounding habitat. Ecology 66, 1809–1816 (1985).

    Article  Google Scholar 

  79. Bach, C. E. Effects of host plant patch size on herbivore density: underlying mechanisms. Ecology 69, 1103–1117 (1988).

    Article  Google Scholar 

  80. Bender, D. J., Contreras, T. A. & Fahrig, L. Habitat loss and population decline: a meta‐analysis of the patch size effect. Ecology 79, 517–533 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the hundreds of CDC staff and local health workers in Shaanxi province who collected successive data from 1980 to 2022. We are also deeply grateful to P. Zheng for her valuable contributions to this paper. This study was supported by the Fundamental Research Funds for the Central Universities (2233300001); National Key Research and Development Program of China (2022YFC2303803); scientific and technological innovation 2030—major project of new generation artificial intelligence (2021ZD0111201); National Natural Science Foundation of China (82073616, 82204160); research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region (2021ZD0006); BNU-FGS Global Environmental Change Program (no. 2023-GC-ZYTS-11); and key research projects of Beijing Natural Science Foundation-Haidian District Joint Fund (L232014). J.R., O.G.P. and C.F. were funded by NSF/BBSRC project ‘Integrating metaviromics with epidemiological dynamics: understanding virus transmission in the Anthropocene’ (BB/Y006879/1). The funders had no role in study design, data collection and analysis, the decision to publish, or in preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived the study. H.T., O.G.P., A.P.D. and N.C.S. jointly supervised this work. P.Y., T.Z., J.Q. and J.W. collected the statistical data. S.P., Y.W., Y. Liang and Y.C. conducted the analyses. P.Y., J.R., Z.L., Q.L., C.S., G.D., C.L.F., J.Q., J.W., S.L., T.Z., C.M., N.B., B.C., R.Y., O.G.P., A.P.D., Y.X., Y. Li and N.C.S. edited the paper. H.T., S.P., Y.C., Y. Li, Y.W., Y.T. and J.R. wrote the paper. All authors read and approved the paper.

Corresponding authors

Correspondence to Pengbo Yu, Nils Chr. Stenseth or Huaiyu Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Greg Adler, Jinbao Liao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Overview of study system, Supplementary Figs. 1–16 and Tables 1–4.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, S., Yu, P., Raghwani, J. et al. Anthropogenic land consolidation intensifies zoonotic host diversity loss and disease transmission in human habitats. Nat Ecol Evol 9, 99–110 (2025). https://doi.org/10.1038/s41559-024-02570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-024-02570-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing