Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of pollinator diversity consistently reduces reproductive success for wild and cultivated plants

Abstract

Pollination is a crucial ecosystem service, yet pollinator species diversity is declining as a result of factors such as climate change, habitat loss and agricultural intensification. While previous studies have often examined the extreme scenario of complete pollinator removal, showing negative impacts on plant reproductive success, we take a more realistic approach by focusing on the effects of decreasing pollinator diversity. Our global meta-analysis reveals a notable negative impact of reduced pollinator species diversity on plant reproductive success measures, such as seed set, fruit set and fruit weight. Notably, this effect varies across plant families, impacting both self-incompatible and self-compatible species. We also find that wild plant species suffer more than cultivated ones. Furthermore, the loss of invertebrate, nocturnal and wild pollinators has a more substantial impact than the loss of vertebrate, diurnal or managed pollinators. Overall, our findings consistently underscore the positive role of biodiversity in maintaining ecosystem functioning, highlighting the urgency of mitigating factors that lead to the decline in pollinator species diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical distribution of the observations.
Fig. 2: Summary of published evidence for the impacts of pollinator diversity loss on plant reproductive success.
Fig. 3: Forest plots showing effect sizes including overall and across crop and wild plants.
Fig. 4: Forest plots showing effect sizes across different moderator variables.
Fig. 5: Effect of pollinator diversity loss on the main plant reproductive success measures across different climatic zones.
Fig. 6: Effect of the loss of different pollinator types on the main plant reproductive success measures.

Similar content being viewed by others

Data availability

The data used in this study are available via Zenodo at https://doi.org/10.5281/zenodo.13319777 (ref. 299) and articles included in the study are visible in the source data.

Code availability

The code used in this study is available via Zenodo at https://doi.org/10.5281/zenodo.13319777 (ref. 299).

References

  1. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article  Google Scholar 

  2. Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2006).

    Article  PubMed Central  Google Scholar 

  3. Barrett, S. C. H. The evolution of mating strategies in flowering plants. Trends Plant Sci. 3, 335–341 (1998).

    Article  Google Scholar 

  4. Barrett, S. C. H. Mating strategies in flowering plants: the outcrossingselfing paradigm and beyond. Philos. Trans. R. Soc. B 358, 991–1004 (2003).

    Article  Google Scholar 

  5. Barrett, S. C. H. Understanding plant reproductive diversity. Philos. Trans. R. Soc. B 365, 99–109 (2010).

    Article  Google Scholar 

  6. Holsinger, K. E. Reproductive systems and evolution in vascular plants. Proc. Natl Acad. Sci. USA 97, 7037–7042 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K. & Klein, A.-M. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 6, e21363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Cardinale, B. J., Ives, A. R. & Inchausti, P. Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos 104, 437–450 (2004).

    Article  Google Scholar 

  10. Ghazoul, J. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 20, 367–373 (2005).

    Article  PubMed  Google Scholar 

  11. Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  PubMed  Google Scholar 

  12. Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

  15. Gazzea, E., Batáry, P. & Marini, L. Global meta-analysis shows reduced quality of food crops under inadequate animal pollination. Nat. Commun. 14, 4463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am. J. Bot. 90, 153–157 (2003).

    Article  PubMed  Google Scholar 

  18. Surina, B. et al. Lack of pollinators selects for increased selfing, restricted gene flow and resource allocation in the rare Mediterranean sage Salvia brachyodon. Sci. Rep. 14, 5017 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lundgren, R., Lázaro, A. & Totland, Ø. Effects of experimentally simulated pollinator decline on recruitment in two European herbs. J. Ecol. 103, 328–337 (2015).

    Article  Google Scholar 

  20. Lundgren, R., Lazáro, A. & Totland, Ø. Experimental pollinator decline affects plant reproduction and is mediated by plant mating system. J. Pollinat. Ecol. 11, 46–56 (2013).

    Article  Google Scholar 

  21. Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).

    Article  PubMed  Google Scholar 

  22. Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).

    Article  Google Scholar 

  23. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  24. Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).

    Article  PubMed  Google Scholar 

  26. Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B 274, 871–876 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).

    Article  PubMed  Google Scholar 

  28. Martins, K. T., Gonzalez, A. & Lechowicz, M. J. Pollination services are mediated by bee functional diversity and landscape context. Agric. Ecosyst. Environ. 200, 12–20 (2015).

    Article  Google Scholar 

  29. Coux, C., Rader, R., Bartomeus, I. & Tylianakis, J. M. Linking species functional roles to their network roles. Ecol. Lett. 19, 762–770 (2016).

    Article  PubMed  Google Scholar 

  30. Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Millard, J. W., Freeman, R. & Newbold, T. Text-analysis reveals taxonomic and geographic disparities in animal pollination literature. Ecography 43, 44–59 (2019).

    Article  Google Scholar 

  33. Marini, L. et al. Crop management modifies the benefits of insect pollination in oilseed rape. Agric. Ecosyst. Environ. 207, 61–66 (2015).

    Article  Google Scholar 

  34. Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Richardson, L. K. et al. Competition for pollination and isolation from mates differentially impact four stages of pollination in a model grassland perennial. J. Ecol. 109, 1356–1369 (2020).

    Article  Google Scholar 

  36. Schleuning, M. et al. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22, 1925–1931 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: a meta-analysis. Front. Ecol. Environ. 16, 82–90 (2018).

    Article  Google Scholar 

  38. Reverté, S. et al. National records of 3000 European bee and hoverfly species: a contribution to pollinator conservation. Insect Conserv. Divers. 16, 758–775 (2023).

    Article  Google Scholar 

  39. Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bishop, J., Garratt, M. P. D. & Nakagawa, S. Animal pollination increases stability of crop yield across spatial scales. Ecol. Lett. 25, 2034–2047 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072 (2011).

    Article  PubMed  Google Scholar 

  42. Burkle, L. A. & Irwin, R. E. The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregata and Linum lewisii. Plant Ecol. 203, 83–98 (2008).

    Article  Google Scholar 

  43. Muñoz, A. A., Celedon-Neghme, C., Cavieres, L. A. & Arroyo, M. T. K. Bottom-up effects of nutrient availability on flower production, pollinator visitation, and seed output in a high-Andean shrub. Oecologia 143, 126–135 (2004).

    Article  PubMed  Google Scholar 

  44. Johnson, S. D. & Harder, L. D. The economy of pollen dispersal in flowering plants. Proc. R. Soc. B 290, 20231148 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fang, X., Yuan, J., Wang, G. & Zhao, Z. Fruit production of shrub, Caragana korshinskii, following above-ground partial shoot removal: mechanisms underlying compensation. Plant Ecol. 187, 213–225 (2006).

    Article  Google Scholar 

  46. Sáez, A. et al. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. R. Soc. B 289, 20220086 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wietzke, A. et al. Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agric. Ecosyst. Environ. 258, 197–204 (2018).

    Article  CAS  Google Scholar 

  48. Owen, K., Vaughton, G. & Ramsey, M. Facilitated autogamy and costs of selfing in the perennial herb Bulbine bulbosa (Asphodelaceae). Int. J. Plant Sci. 168, 579–585 (2007).

    Article  Google Scholar 

  49. Chacoff, N. P., García, D. & Obeso, J. R. Effects of pollen quality and quantity on pollen limitation in Crataegus monogyna (Rosaceae) in NW Spain. Flora Morphol. Distrib. Funct. Ecol. Plants 203, 499–507 (2008).

    Google Scholar 

  50. Baker, H. G. Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb. Symp. Quant. Biol. 24, 177–191 (1959).

    Article  CAS  PubMed  Google Scholar 

  51. Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suetsugu, K. Autonomous self-pollination and insect visitors in partially and fully mycoheterotrophic species of Cymbidium (Orchidaceae). J. Plant Res. 128, 115–125 (2014).

    Article  PubMed  Google Scholar 

  53. Munguía-Rosas, M. A., Sosa, V. J., Ojeda, M. M. & De-Nova, J. A. Specialization clines in the pollination systems of agaves (Agavaceae) and columnar cacti (Cactaceae): a phylogenetically controlled meta-analysis. Am. J. Bot. 96, 1887–1895 (2009).

    Article  PubMed  Google Scholar 

  54. Muchhala, N. & Potts, M. D. Character displacement among bat-pollinated flowers of the genus Burmeistera: analysis of mechanism, process and pattern. Proc. R. Soc. B 274, 2731–2737 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Magrach, A., Artamendi, M., Lapido, P. D., Parejo, C. & Rubio, E. Indirect interactions between pollinators drive interaction rewiring through space. Ecosphere 14, e4521 (2023).

  57. Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).

    Article  PubMed  Google Scholar 

  58. Mallinger, R. E. & Gratton, C. Species richness of wild bees, but not the use of managed honeybees, increases fruit set of a pollinator-dependent crop. J. Appl. Ecol. 52, 323–330 (2014).

    Article  Google Scholar 

  59. Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl Acad. Sci. USA 108, 20645–20649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bartomeus, I. et al. Biodiversity ensures plant pollinator phenological synchrony against climate change. Ecol. Lett. 16, 1331–1338 (2013).

    Article  PubMed  Google Scholar 

  61. Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612 (2014).

    Article  Google Scholar 

  62. Morris, W. F., Vázquez, D. P. & Chacoff, N. P. Benefit and cost curves for typical pollination mutualisms. Ecology 91, 1276–1285 (2010).

    Article  PubMed  Google Scholar 

  63. Travis, D. J. & Kohn, J. R. Honeybees (Apis mellifera) decrease the fitness of plants they pollinate. Proc. R. Soc. B 290, 20230967 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 276, 229–237 (2008).

    Article  PubMed Central  Google Scholar 

  65. Fontaine, C., Dajoz, I., Meriguet, J. & Loreau, M. Functional diversity of plant pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 4, e1 (2005).

    Article  PubMed Central  Google Scholar 

  66. Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B 279, 4845–4852 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hoehn, P., Tscharntke, T., Tylianakis, J. M. & Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. B 275, 2283–2291 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cardinale, B. J., Weis, J. J., Forbes, A. E., Tilmon, K. J. & IveS, A. R. Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator–prey system. J. Anim. Ecol. 75, 497–505 (2006).

    Article  PubMed  Google Scholar 

  69. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article  Google Scholar 

  70. Schwartz, M. W. et al. Linking biodiversity to ecosystem function: Implications for conservation ecology. Oecologia 122, 297–305 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Lanuza, J. B., Bartomeus, I. & Godoy, O. Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes. Ecol. Lett. 21, 865–874 (2018).

    Article  PubMed  Google Scholar 

  72. Lajeunesse, M. J. Facilitating systematic reviews, data extraction, and meta-analysis with the METAGEAR package for R. Methods Ecol. Evol. 7, 323–330 (2016).

  73. Albor, C., García-Franco, J. G., Parra-Tabla, V., Díaz-Castelazo, C. & Arceo-Gómez, G. Taxonomic and functional diversity of the co-flowering community differentially affect Cakile edentula pollination at different spatial scales. J. Ecol. 107, 2167–2181 (2019).

    Article  Google Scholar 

  74. Albrecht, M., Duelli, P., Obrist, M. K., Kleijn, D. & Schmid, B. Effective long-distance pollen dispersal in Centaurea jacea. PLoS ONE 4, e6751 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Alomar, D., González-Estévez, M. A., Traveset, A. & Lázaro, A. The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agric. Ecosyst. Environ. 264, 34–43 (2018).

    Article  Google Scholar 

  76. Anderson, S. The relative importance of birds and insects as pollinators of the New Zealand flora. NZ J. Ecol. 27, 83–94 (2003).

    Google Scholar 

  77. Amorim, M. D., Maruyama, P. K., Baronio, G. J., Azevedo, C. S. & Rech, A. R. Hummingbird contribution to plant reproduction in the rupestrian grasslands is not defined by pollination syndrome. Oecologia 199, 1–12 (2022).

    Article  PubMed  Google Scholar 

  78. Anderson, S. H., Kelly, D., Ladley, J. J., Molloy, S. & Terry, J. Cascading effects of bird functional extinction reduce pollination and plant density. Science 331, 1068–1071 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Anderson, S. H., Ladley, J. J., Robertson, A. W. & Kelly, D. Effects of changes in bird community composition and species abundance on plant reproduction, through pollination and seed dispersal. Ibis 163, 875–889 (2021).

    Article  Google Scholar 

  80. Arena, G., Symes, C. T. & Witkowski, E. T. F. The birds and the seeds: opportunistic avian nectarivores enhance reproduction in an endemic montane aloe. Plant Ecol. 214, 35–47 (2012).

    Article  Google Scholar 

  81. Arizaga, S., Ezcurra, E., Peters, E., Arellano, F. Rde & Vega, E. Pollination ecology of Agave macroacantha (Agavaceae) in a Mexican tropical desert. II. The role of pollinators. Am. J. Bot. 87, 1011–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Artz, D. R. & Waddington, K. D. The effects of neighbouring tree islands on pollinator density and diversity, and on pollination of a wet prairie species, Asclepias lanceolata (Apocynaceae). J. Ecol. 94, 597–608 (2006).

    Article  Google Scholar 

  83. Ashman, T.-L. & King, E. A. Are flower-visiting ants mutualists or antagonists? A study in a gynodioecious wild strawberry. Am. J. Bot. 92, 891–895 (2005).

    Article  PubMed  Google Scholar 

  84. Aslan, C. E. Pollination of the endangered Arizona hedgehog cactus (Echinocereus arizonicus). Am. Midl. Nat. 173, 61–72 (2015).

    Article  Google Scholar 

  85. Atmowidi, T., Prawasti, T. S., Rianti, P., Prasojo, F. A. & Pradipta, N. B. Stingless bees pollination increases fruit formation of strawberry (Fragaria × annanassa Duch) and melon (Cucumis melo l.). Trop. Life Sci. Res. 33, 43–54 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chuttong, B. et al. Foraging behavior and pollination efficiency of honey bees (Apis melliferaL.) and stingless bees (Tetragonula laeviceps species complex) on mango (Mangifera indica L., cv. Nam Dokmai) in Northern Thailand. J. Ecol. Environ. https://doi.org/10.5141/jee.22.012 (2022).

  87. Barthell, J. F., Randall, J. M., Thorp, R. W. & Wenner, A. M. Promotion of seed set in yellow star-thistle by honey bees: evidence of an invasive mutualism. Ecol. Appl. 11, 1870–1883 (2001).

    Article  Google Scholar 

  88. Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Belan, H. C., Barônio, G. J., Kuster, V. C., Oliveira, D. C. & Vasconcelos, H. L. Extranuptial nectaries in flowers: ants increase the reproductive success of the ant–plant Miconia tococa (Melastomataceae). Plant Biol. 22, 917–923 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Bissessur, P., Bunsy, Y., Baider, C. & Florens, F. B. V. Non-intrusive systematic study reveals mutualistic interactions between threatened island endemic species and points to more impactful conservation. J. Nat. Conserv. 49, 108–117 (2019).

    Article  Google Scholar 

  91. Bisui, S., Layek, U. & Karmakar, P. Utilization of Indian Dammar bee (Tetragonula iridipennis Smith) as a pollinator of bitter gourd. Acta Agrobot. 73, 7316 (2020).

  92. Blaauw, B. R. & Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl. Ecol. 15, 701–711 (2014).

    Article  Google Scholar 

  93. Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 20122767 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Brown, M., Downs, C. T. & Johnson, S. D. Pollination of the red hot poker Kniphofia caulescens by short-billed opportunistic avian nectarivores. S. Afr. J. Bot. 75, 707–712 (2009).

    Article  Google Scholar 

  95. Brown, M., Downs, C. T. & Johnson, S. D. Pollination of the red-hot poker Kniphofia laxiflora (Asphodelaceae) by sunbirds. S. Afr. J. Bot. 76, 460–464 (2010).

    Article  Google Scholar 

  96. Butler, H. C., Cozien, R. J. & Johnson, S. D. For the birds? Contrasting pollination and breeding systems of the paintbrush lilies Scadoxus puniceus and S. membranaceus (Amaryllidaceae). Plant System. Evol. 308, 6 (2022).

  97. Cádiz-Véliz, A., Verdessi, F. & Carvallo, G. O. Shrub canopy matrix decreases reproductive output of a sheltered plant via pollinator exclusion. Basic Appl. Ecol. 56, 419–430 (2021).

    Article  Google Scholar 

  98. Campbell, A. J., Wilby, A., Sutton, P. & Wäckers, F. L. Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 239, 20–29 (2017).

    Article  Google Scholar 

  99. Campbell, J. W., Daniels, J. C. & Ellis, J. D. Fruit set and single visit stigma pollen deposition by managed bumble bees and wild bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae). J. Econ. Entomol. 111, 989–992 (2018).

    Article  PubMed  Google Scholar 

  100. Campbell, J. W., Irvin, J. H. & Ellis, J. D. Bee contribution to partridge pea (Chamaecrista fasciculata) pollination in Florida. Am. Midl. Nat. 179, 86–93 (2018).

    Article  Google Scholar 

  101. Carpenter, F. L. Plant–pollinator interactions in Hawaii: pollination energetics of Metrosideros collina (Myrtaceae). Ecology 57, 1125–1144 (1976).

    Article  Google Scholar 

  102. Carvalheiro, L. G., Seymour, C. L., Veldtman, R. & Nicolson, S. W. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J. Appl. Ecol. 47, 810–820 (2010).

    Article  Google Scholar 

  103. Castro, H. et al. Spatiotemporal variation in pollination deficits in an insect-pollinated dioecious crop. Plants 10, 1273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Celebrezze, T. & Paton, D. C. Do introduced honeybees (Apis mellifera, Hymenoptera) provide full pollination service to bird-adapted Australian plants with small flowers? An experimental study of Brachyloma ericoides (Epacridaceae). Austral Ecol. 29, 129–136 (2004).

    Article  Google Scholar 

  105. Christmann, S., Aw-Hassan, A., Rajabov, T., Khamraev, A. S. & Tsivelikas, A. Farming with alternative pollinators increases yields and incomes of cucumber and sour cherry. Agron. Sustain. Dev. 37, 24 (2017).

  106. Classen, A. et al. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc. R. Soc. B 281, 20133148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Connelly, H., Poveda, K. & Loeb, G. Landscape simplification decreases wild bee pollination services to strawberry. Agric. Ecosyst. Environ. 211, 51–56 (2015).

    Article  Google Scholar 

  108. Cousins, S. R., Witkowski, E. T. F., Pfab, M. F., Riddles, R. E. & Mycock, D. J. Reproductive ecology of Aloe plicatilis, a fynbos tree aloe endemic to the Cape Winelands, South Africa. S. Afr. J. Bot. 87, 52–65 (2013).

    Article  Google Scholar 

  109. Cruz-Neto, O., Machado, I. C., Galetto, L. & Lopes, A. V. The influence of nectar production and floral visitors on the female reproductive success of Inga (Fabaceae): a field experiment. Bot. J. Linn. Soc. 177, 230–245 (2015).

    Article  Google Scholar 

  110. Cunningham, S. A. Experimental evidence for pollination of Banksia spp. by non-flying mammals. Oecologia 87, 86–90 (1991).

    Article  PubMed  Google Scholar 

  111. Cárdenas-Calle, S. et al. Pollinator effectiveness in the mixed-pollination system of a neotropical Proteaceae, Oreocallis grandiflora. J. Pollinat. Ecol. https://doi.org/10.26786/1920-7603(2020)601 (2021).

  112. Dalgleish, E. Effectiveness of invertebrate and vertebrate pollinators and the influence of pollen limitation and inflorescence position on follicle production of Banksia aemula (Family Proteaceae). Aust. J. Bot. 47, 553 (1999).

    Article  Google Scholar 

  113. Dar, S., Del Coro Arizmendi, M. & Valiente-Banuet, A. Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico. Ann. Bot. 97, 423–427 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Day, D. A., Collins, B. G. & Rees, R. G. Reproductive biology of the rare and endangered Banksia brownii Baxter ex R. Br. (Proteaceae). Aust. J. Ecol. 22, 307–315 (1997).

    Article  Google Scholar 

  115. Dedej, S. & Delaplane, K. S. Nectar-robbing carpenter bees reduce seed-setting capability of honey bees (Hymenoptera: Apidae) in rabbiteye blueberry, Vaccinium ashei, ‘Climax’. Environ. Entomol. 33, 100–106 (2004).

    Article  Google Scholar 

  116. Delnevo, N. et al. Pollen adaptation to ant pollination: a case study from the Proteaceae. Ann. Bot. 126, 377–386 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nuevo Diego, C. & Stewart, A. Pollinators increase reproductive success of a self-compatible mangrove, Sonneratia ovata, in Southern Thailand. Trop. Nat. Hist. 19, 88–102 (2019).

  118. Divija, S. D. & Kamala Jayanthi, P. D. Pollination efficiency and foraging behaviour of honey bees and flies to onion Allium cepa L. J. Apic. Res. 61, 688–694 (2022).

    Article  Google Scholar 

  119. Drummond, F. Commercial bumble bee pollination of lowbush blueberry. Int. J. Fruit. Sci. 12, 54–64 (2012).

    Article  Google Scholar 

  120. Du, W., Huang, L.-J. & Wang, X.-F. Deceit pollination and the effect of deforestation on reproduction in dioecious Schisandra sphenanthera (Schisandraceae) in central China. J. Syst. Evol. 50, 36–44 (2012).

    Article  Google Scholar 

  121. Duffy, K. J., Patrick, K. L. & Johnson, S. D. Does the likelihood of an Allee effect on plant fecundity depend on the type of pollinator? J. Ecol. 101, 953–962 (2013).

    Article  Google Scholar 

  122. Eeraerts, M., Meeus, I., Van Den Berge, S. & Smagghe, G. Landscapes with high intensive fruit cultivation reduce wild pollinator services to sweet cherry. Agric. Ecosyst. Environ. 239, 342–348 (2017).

    Article  Google Scholar 

  123. DePaolo Elzay, S. Mass Flowering Conundrum: Do the Benefits of Canola Outweigh the Negative Effects of Land Use Change on Wild Bees? PhD thesis, Oklahoma State Univ. (2021).

  124. Epps, M. J., Allison, S. E. & Wolfe, L. M. Reproduction in flame azalea (Rhododendron calendulaceum, Ericaceae): a rare case of insect wing pollination. Am. Nat. 186, 294–301 (2015).

    Article  PubMed  Google Scholar 

  125. Evans, E. C. & Spivak, M. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination. J. Econ. Entomol. 99, 614–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Eyitayo, D. L. Ecological Consequences of Human-Modified Landscapes: Features of Powerline Corridors. PhD thesis, Ohio Univ. (2020).

  127. Fang, Q., Chen, Y.-Z. & Huang, S.-Q. Generalist passerine pollination of a winter-flowering fruit tree in central China. Ann. Bot. 109, 379–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fernández, J. D., Lorite, J., Bosch, J. & Gómez, J. M. Variation in the reproductive success of a narrow endemic plant: effects of geographical distribution, abiotic conditions and pollinator community composition. Basic Appl. Ecol. 16, 375–385 (2015).

    Article  Google Scholar 

  129. Fleming, T. H. & Holland, J. N. The evolution of obligate pollination mutualisms: Senita cactus and Senita moth. Oecologia 114, 368–375 (1998).

    Article  PubMed  Google Scholar 

  130. Fleming, P. & Nicolson, S. How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators? Oecologia 132, 361–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Fleming, T. H., Sahley, C. T., Holland, J. N., Nason, J. D. & Hamrick, J. L. Sonoran desert columnar cacti and the evolution of generalized pollination systems. Ecol. Monogr. 71, 511–530 (2001).

    Article  Google Scholar 

  132. Fleming, T. H., Tuttle, M. D. & Horner, M. A. Pollination biology and the relative importance of nocturnal and diurnal pollinators in three species of Sonoran Desert columnar cacti. Southwest. Nat. 41, 257–269 (1996).

    Google Scholar 

  133. Funamoto, D. & Ohashi, K. Hidden floral adaptation to nocturnal moths in an apparently bee-pollinated flower, Adenophora triphylla var. japonica (Campanulaceae). Plant Biol. 19, 767–774 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Funamoto, D. & Sugiura, S. Relative importance of diurnal and nocturnal pollinators for reproduction in the early spring flowering shrub Stachyurus praecox (Stachyuraceae). Plant Species Biol. 36, 94–101 (2020).

    Article  Google Scholar 

  135. Fuster, F. & Traveset, A. Importance of intraspecific variation in the pollination and seed dispersal functions of a double mutualist animal species. Oikos 129, 106–116 (2019).

    Article  Google Scholar 

  136. Galea, M. B., Wojcik, V. & Dunn, C. Using pollinator seed mixes in landscape restoration boosts bee visitation and reproduction in the rare local endemic Santa Susana tarweed, Deinandra minthornii. Nat. Areas J. 36, 512–522 (2016).

    Article  Google Scholar 

  137. Gaspar, H. et al. Impact of local practices and landscape on the diversity and abundance of pollinators in an insect-dependent crop. Agric. Ecosyst. Environ. 326, 107804 (2022).

    Article  CAS  Google Scholar 

  138. Giménez-Benavides, L., Dötterl, S., Jürgens, A., Escudero, A. & Iriondo, J. M. Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a SileneHadena interaction. Oikos 116, 1461–1472 (2007).

    Google Scholar 

  139. Gómez, J. M. Effectiveness of ants as pollinators of Lobularia maritima: effects on main sequential fitness components of the host plant. Oecologia 122, 90–97 (2000).

    Article  PubMed  Google Scholar 

  140. Gómez, J. M. Self-pollination in Euphrasia willkommii Freyn (Scrophulariaceae), an endemic species from the alpine of the Sierra Nevada (Spain). Plant Syst. Evol. 232, 63–71 (2002).

    Article  Google Scholar 

  141. Gómez, J. M. & Zamora, R. Pollination by ants: consequences of the quantitative effects on a mutualistic system. Oecologia 91, 410–418 (1992).

    Article  PubMed  Google Scholar 

  142. Gómez, J. M., Bosch, J., Perfectti, F., Fernández, J. & Abdelaziz, M. Pollinator diversity affects plant reproduction and recruitment: the tradeoffs of generalization. Oecologia 153, 597–605 (2007).

    Article  PubMed  Google Scholar 

  143. Hingston, A. B., Potts, B. M. & McQuillan, P. B. Pollination services provided by various size classes of flower visitors to Eucalyptus globulus ssp. globulus (Myrtaceae). Aust. J. Bot. 52, 353 (2004).

    Article  Google Scholar 

  144. Holland, N. J. & Fleming, T. H. Co-pollinators and specialization in the pollinating seed–consumer mutualism between senita cacti and senita moths. Oecologia 133, 534–540 (2002).

    Article  PubMed  Google Scholar 

  145. Huang, Z.-H., Luo, W.-H., Huang, S.-X. & Huang, S.-Q. Sunbirds serve as major pollinators for various populations of Firmiana kwangsiensis, a tree endemic to South China. J. Syst. Evol. 56, 243–249 (2018).

    Article  Google Scholar 

  146. Huang, Z.-H., Song, Y.-P. & Huang, S.-Q. Evidence for passerine bird pollination in Rhododendron species. AoB PLANTS 9, plx062 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ibarra-Cerdeña, C. N., Iñiguez-Dávalos, L. I. & Sánchez-Cordero, V. Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico. Am. J. Bot. 92, 503–509 (2005).

    Article  PubMed  Google Scholar 

  148. Ibarra-Isassi, J. & Sendoya, S. F. Ants as floral visitors of Blutaparon portulacoides (A. St-Hil.) Mears (Amaranthaceae): an ant pollination system in the Atlantic rainforest. Arthropod–Plant Interact. 10, 221–227 (2016).

    Article  Google Scholar 

  149. Jaca, J., Nogales, M. & Traveset, A. Reproductive success of the Canarian Echium simplex (Boraginaceae) mediated by vertebrates and insects. Plant Biol. 21, 216–226 (2018).

    Article  PubMed  Google Scholar 

  150. Jaca, J., Nogales, M. & Traveset, A. Effect of diurnal vs. nocturnal pollinators and flower position on the reproductive success of Echium simplex. Arthropod–Plant Interact. 14, 409–419 (2020).

    Article  Google Scholar 

  151. Jaca, J., Rodríguez, N., Nogales, M. & Traveset, A. Impact of alien rats and honeybees on the reproductive success of an ornithophilous endemic plant in Canarian thermosclerophyllous woodland relicts. Biol. Invasions 21, 3203–3219 (2019).

    Article  Google Scholar 

  152. Janeček, Š. et al. Ecological fitting is a sufficient driver of tight interactions between sunbirds and ornithophilous plants. Ecol. Evol. 10, 1784–1793 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jiang, X., Deng, H.-N., Qu, J., Zeng, H. & Cao, G.-X. The function of extrafloral nectaries in the pollination and reproduction of Sambucus javanica. Plant Species Biol. 34, 53–60 (2019).

    Article  Google Scholar 

  154. Johnson, S. D., Pauw, A. & Midgley, J. Rodent pollination in the African lily Massonia depressa (Hyacinthaceae). Am. J. Bot. 88, 1768–1773 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Jürgens, A., Glück, U., Aas, G. & Dötterl, S. Diel fragrance pattern correlates with olfactory preferences of diurnal and nocturnal flower visitors in Salix caprea (Salicaceae). Bot. J. Linn. Soc. 175, 624–640 (2014).

    Article  Google Scholar 

  156. Kleiman, B. M., Koptur, S. & Jayachandran, K. Weeds enhance pollinator diversity and fruit yield in mango. Insects 12, 1114 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Klein, A., SteffanDewenter, I. & Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. Lond. B 270, 955–961 (2003).

    Article  Google Scholar 

  158. Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Pollination of Coffea canephora in relation to local and regional agroforestry management. J. Appl. Ecol. 40, 837–845 (2003).

    Article  Google Scholar 

  159. Klein, A.-M. et al. Wild pollination services to California almond rely on semi-natural habitat. J. Appl. Ecol. 49, 723–732 (2012).

    Article  Google Scholar 

  160. Koptur, S., Peña, S. & Roque, B. B. Do morning butterfly visitors benefit a night-flowering hawkmoth pollinated plant? Castanea 86, 100–111 (2021).

  161. Kovács-Hostyánszki, A. et al. Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol. Appl. 23, 1938–1946 (2013).

    Article  PubMed  Google Scholar 

  162. Kühn, N., Midgley, J. & Steenhuisen, S.-L. Reproductive biology of three co-occurring, primarily small-mammal pollinated Protea species (Proteaceae). S. Afr. J. Bot. 113, 337–345 (2017).

    Article  Google Scholar 

  163. Kunitake, Y. K., Hasegawa, M., Miyashita, T. & Higuchi, H. Role of a seasonally specialist bird Zosterops japonica on pollen transfer and reproductive success of Camellia japonica in a temperate area. Plant Species Biol. 19, 197–201 (2004).

    Article  Google Scholar 

  164. Lange, R. S., Scobell, S. A. & Scott, P. E. Hummingbird-syndrome traits, breeding system, and pollinator effectiveness in two syntopic Penstemon species. Int. J. Plant Sci. 161, 253–263 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Lange, R. S. & Scott, P. E. Hummingbird and bee pollination of Penstemon pseudospectabilis. J. Torre. Bot. Soc. 126, 99 (1999).

    Article  Google Scholar 

  166. Larrea-Alcázar, D. M. & López, R. P. Pollination biology of Oreocereus celsianus (Cactaceae), a columnar cactus inhabiting the high subtropical Andes. Plant Syst. Evol. 295, 129–137 (2011).

    Article  Google Scholar 

  167. Lassen, K. M., Ræbild, A., Hansen, H., Brødsgaard, C. J. & Eriksen, E. N. Bats and bees are pollinating Parkia biglobosa in The Gambia. Agrofor. Syst. 85, 465–475 (2011).

    Article  Google Scholar 

  168. Layek, U., Kundu, A., Bisui, S. & Karmakar, P. Impact of managed stingless bee and western honey bee colonies on native pollinators and yield of watermelon: a comparative study. Ann. Agric. Sci. 66, 38–45 (2021).

    Article  Google Scholar 

  169. Layek, U., Das, A. & Karmakar, P. Supplemental stingless bee pollination in fennel (Foeniculum vulgare mill.): an assessment of impacts on native pollinators and crop yield. Front. Sustain. Food Syst. 6, 820264 (2022).

  170. Lemaitre, A. B., Pinto, C. F. & Niemeyer, H. M. Generalized pollination system: are floral traits adapted to different pollinators?. Arthropod–Plant Interact. 8, 261–272 (2014).

    Google Scholar 

  171. Li, J.-K. & Huang, S.-Q. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): contemporary pollinators may not reflect the historical pollination syndrome. Ann. Bot. 104, 845–851 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Li, Q. et al. High pollination deficit and strong dependence on honeybees in pollination of Korla fragrant pear, Pyrus sinkiangensis. Plants 11, 1734 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lin, S.-Y., Nol, E. & Dorken, M. E. Spatial dynamics of pollination in dioecious Shepherdia canadensis (Elaeagnaceae). Plant Ecol. 216, 1213–1223 (2015).

    Article  Google Scholar 

  174. Liu, H. & Pemberton, R. W. Solitary invasive orchid bee outperforms co-occurring native bees to promote fruit set of an invasive Solanum. Oecologia 159, 515–525 (2008).

    Article  PubMed  Google Scholar 

  175. Liu, Q., Xu, P., Yan, K. & Guo, Y. Pollination services from insects in homegardens in the Chengdu Plain will be confronted with crises. Sustainability 11, 2169 (2019).

    Article  Google Scholar 

  176. Lopes, L. E. & Buzato, S. Variation in pollinator assemblages in a fragmented landscape and its effects on reproductive stages of a self-incompatible treelet, Psychotria suterella (Rubiaceae). Oecologia 154, 305–314 (2007).

    Article  PubMed  Google Scholar 

  177. MacInnis, G. & Forrest, J. R. K. Pollination by wild bees yields larger strawberries than pollination by honey bees. J. Appl. Ecol. 56, 824–832 (2019).

    Article  Google Scholar 

  178. Marques, J. S., Tagliati, M. C. & Faria, A. P. G. Diurnal versus nocturnal pollination success in Billbergia horrida Regel (Bromeliaceae) and the first record of chiropterophily for the genus. An. Acad. Bras. Cienc. 87, 835–842 (2015).

    PubMed  Google Scholar 

  179. Martin, K., Anderson, B., Minnaar, C. & de Jager, M. L. Assessing the effectiveness of honey bee pollinators for cultivated blueberries in South Africa. S. Afr. J. Bot. 150, 113–119 (2022).

    Article  Google Scholar 

  180. Martínez-Bauer, A. E., Martínez, G. C., Murphy, D. J. & Burd, M. Multitasking in a plant–ant interaction: how does Acacia myrtifolia manage both ants and pollinators? Oecologia 178, 461–471 (2015).

    Article  PubMed  Google Scholar 

  181. Martins, C., Oliveira, R., Aguiar, L. M. S. & Antonini, Y. Pollination biology of the endangered columnar cactus Cipocereus crassisepalus: a case of close relationship between plant and pollinator. Acta Bot. Bras. 34, 177–184 (2020).

    Article  Google Scholar 

  182. Maruyama, P. K., Custódio, L. N. & Oliveira, P. E. When hummingbirds are the thieves: visitation effect on the reproduction of neotropical snowbell Styrax ferrugineus Nees & Mart (Styracaceae). Acta Bot. Bras. 26, 58–64 (2012).

    Article  Google Scholar 

  183. McKechnie, I. M., Thomsen, C. J. M. & Sargent, R. D. Forested field edges support a greater diversity of wild pollinators in lowbush blueberry (Vaccinium angustifolium). Agric. Ecosyst. Environ. 237, 154–161 (2017).

    Article  Google Scholar 

  184. McMullen, C. K. Pollination biology of the Galápagos endemic, Tournefortia rufo-sericea (Boraginaceae). Bot. J. Linn. Soc. 153, 21–31 (2007).

    Article  Google Scholar 

  185. McMullen, C. K. Pollination biology of a night-flowering Galápagos endemic, Ipomoea habeliana (Convolvulaceae). Bot. J. Linn. Soc. 160, 11–20 (2009).

    Article  Google Scholar 

  186. McMullen, C. K. Nocturnal and diurnal pollination of Clerodendrum molle (Verbenaceae) in the Galápagos Islands. Plant Syst. Evol. 292, 15–23 (2010).

    Article  Google Scholar 

  187. McMullen, C. K. Pollination of the heterostylous Galápagos native, Cordia lutea (Boraginaceae). Plant Syst. Evol. 298, 569–579 (2011).

    Article  Google Scholar 

  188. Meena, N. K. et al. Managed pollination is a much better way of increasing productivity and essential oil content of dill seeds crop. Sci. Rep. 12, 13134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Melidonis, C. A. & Peter, C. I. Diurnal pollination, primarily by a single species of rodent, documented in Protea foliosa using modified camera traps. S. Afr. J. Bot. 97, 9–15 (2015).

    Article  Google Scholar 

  190. Michiyama, H. et al. Effect of interruption of pollination by walking or flying insects on seed-set in buckwheat. In Proceedings of the 10th International Symposium on Buckwheat, Yanhling, Shaanxi, China 142–145 (2007).

  191. Molina-Freaner, F. & Eguiarte, L. E. The pollination biology of two paniculate agaves (Agavaceae) from northwestern Mexico: contrasting roles of bats as pollinators. Am. J. Bot. 90, 1016–1024 (2003).

    Article  PubMed  Google Scholar 

  192. Monteiro, D. & Ramalho, M. Abelhas generalistas (Meliponina) e o sucesso reprodutivo de Stryphnodendron pulcherrimum (Fabales: Mimosaceae) com florada em massa na Mata Atlântica, BA. Neotrop. Entomol. 39, 519–526 (2010).

    Article  PubMed  Google Scholar 

  193. Moreira, M. M., Miranda, A. S., de Sá-Haiad, B., Santiago-Fernandes, L. R. & de Lima, H. A. Diurnal versus nocturnal pollinators and the effect of anthesis onset on the reproductive success of Agarista revoluta (Ericaceae). Plant Syst. Evol. 305, 375–384 (2019).

    Article  Google Scholar 

  194. Motzke, I., Tscharntke, T., Wanger, T. C. & Klein, A.-M. Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. J. Appl. Ecol. 52, 261–269 (2014).

    Article  Google Scholar 

  195. Munguía-Rosas, M. A., Sosa, V. J. & Jácome-Flores, M. E. Pollination system of the Pilosocereus leucocephalus columnar cactus (tribe Cereeae) in eastern Mexico. Plant Biol. 12, 578–586 (2010).

    PubMed  Google Scholar 

  196. Nakajima, R. et al. Comparison of floral traits and pollinator assemblages of insular and mainland varieties of Lilium auratum. Plant Species Biol. 33, 276–288 (2018).

    Article  Google Scholar 

  197. Nassar, J. M., Ramírez, N. & Linares, O. Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Am. J. Bot. 84, 918–927 (1997).

    Article  CAS  PubMed  Google Scholar 

  198. Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).

    Article  Google Scholar 

  199. Navarro, L. Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae). Biotropica 31, 618–625 (1999).

    Article  Google Scholar 

  200. Noone, R. E., Doucet, S. M. & Jones, P. L. Pollination ecology of lowbush blueberry (Vaccinium angustifolium Aiton) in an island ecosystem. Can. J. Plant. Sci. 102, 710–721 (2022).

    Article  CAS  Google Scholar 

  201. Obregon, D., Guerrero, O. R., Stashenko, E. & Poveda, K. Natural habitat partially mitigates negative pesticide effects on tropical pollinator communities. Glob. Ecol. Conserv. 28, e01668 (2021).

    Google Scholar 

  202. Ortega-Baes, P., Saravia, M., Sühring, S., Godínez-Alvarez, H. & Zamar, M. Reproductive biology of Echinopsis terscheckii (Cactaceae): the role of nocturnal and diurnal pollinators. Plant Biol. 13, 33–40 (2010).

    Article  Google Scholar 

  203. Ortiz, P. L., Arista, M. & Talavera, S. Pollination and breeding system of Putoria calabrica (Rubiaceae), a Mediterranean dwarf shrub. Plant Biol. 2, 325–330 (2000).

    Article  Google Scholar 

  204. Paschapur, A. U. et al. Insect pollinators of eggplant (Solanum melongena L.) in the Indian Himalayas and their role in enhancement of fruit quality and yield. Arthropod–Plant Interact. 16, 349–360 (2022).

    Article  CAS  Google Scholar 

  205. Paton, D. & Turner, V. Pollination of Banksia ericifolia Smith: birds, mammals and insects as pollen vectors. Aust. J. Bot. 33, 271 (1985).

    Article  Google Scholar 

  206. Payne, S. L., Symes, C. T. & Witkowski, E. T. F. Of feathers and fur: differential pollinator roles of birds and small mammals in the grassland succulent Aloe peglerae. Austral Ecol. 41, 952–963 (2016).

    Article  Google Scholar 

  207. Payne, S. L., Witkowski, E. T. F. & Symes, C. T. Good times, bad times: inter-annual reproductive output in a montane endemic succulent (Aloe peglerae; Asphodelaceae) driven by contrasting visitor responses of small mammals and birds. Aust. J. Bot. 67, 116 (2019).

    Article  Google Scholar 

  208. Pérez-Méndez, N. et al. The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57, 599–608 (2020).

    Article  Google Scholar 

  209. Perrot, T. et al. Experimental quantification of insect pollination on sunflower yield, reconciling plant and field scale estimates. Basic Appl. Ecol. 34, 75–84 (2019).

    Article  Google Scholar 

  210. Petit, S. The pollinators of two species of columnar cacti on Curacao, Netherlands Antilles. Biotropica 27, 538 (1995).

    Article  Google Scholar 

  211. Philpott, S. M., Uno, S. & Maldonado, J. The importance of ants and high-shade management to coffee pollination and fruit weight in Chiapas, Mexico. Biodivers. Conserv. 15, 487–501 (2006).

    Article  Google Scholar 

  212. Pi, H.-Q. et al. Altitude-related shift of relative abundance from insect to sunbird pollination in Elaeagnus umbellata (Elaeagnaceae). J. Syst. Evol. 59, 1266–1275 (2020).

    Article  Google Scholar 

  213. Magalhães, A. F. P., Maruyama, P. K., Tavares, L. A. F. & Martins, R. L. The relative importance of hummingbirds as pollinators in two bromeliads with contrasting floral specializations and breeding systems. Bot. J. Linn. Soc. 188, 316–326 (2018).

    Google Scholar 

  214. Pitts-Singer, T. L., Artz, D. R., Peterson, S. S., Boyle, N. K. & Wardell, G. I. Examination of a managed pollinator strategy for almond production using Apis mellifera (Hymenoptera: Apidae) and Osmia lignaria (Hymenoptera: Megachilidae). Environ. Entomol. 47, 364–377 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Queiroz, J. A., Quirino, Z. G. M. & Machado, I. C. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators. AoB Plants 7, plv127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Ramsey, M. W. Differences in pollinator effectiveness of birds and insects visiting Banksia menziesii (Proteaceae). Oecologia 76, 119–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  217. Ramsey, M. & Vaughton, G. Inbreeding depression and pollinator availability in a partially self-fertile perennial herb Blandfordia grandiflora (Liliaceae). Oikos 76, 465 (1996).

    Article  Google Scholar 

  218. Rao, S. & Stephen, W. P. Bumble bee pollinators in red clover seed production. Crop Sci. 49, 2207–2214 (2009).

    Article  Google Scholar 

  219. Ratsirarson, J. Pollination ecology of Aloe divaricata, Berger (Liliaceae): an endemic plant species of south-west Madagascar. S. Afr. J. Bot. 61, 249–252 (1995).

    Article  Google Scholar 

  220. Richards, K. W. The alfalfa leafcutter bee, Megachile rotundata: a potential pollinator for some annual forage clovers. J. Apic. Res. 34, 115–121 (1995).

    Article  Google Scholar 

  221. Richards, K. W. Effectiveness of the alfalfa leafcutter bee Megachile rotundata Fab. to pollinate four perennial legumes. J. Apic. Res. 59, 69–76 (2019).

    Article  Google Scholar 

  222. Richards, K. W. Effectiveness of the alfalfa leafcutter bee Megachile rotundata Fab. to pollinate perennial clovers. J. Apic. Res. 55, 259–267 (2016).

    Article  Google Scholar 

  223. Robertson, S. Nocturnal Pollination in Fruit Agriculture. PhD, Univ. Arkansas, 2021.

  224. Robertson, A. W., Ladley, J. J. & Kelly, D. Effectiveness of short-tongued bees as pollinators of apparently ornithophilous New Zealand mistletoes. Austral Ecol. 30, 298–309 (2005).

    Article  Google Scholar 

  225. Robertson, S. M., Joshi, N. K. & Dowling, A. P. G. Nocturnal vs. diurnal pollination of self-fertile peaches and muscadine grapes. Fla. Entomol. 103, 302 (2020).

    Article  Google Scholar 

  226. Robertson, S. M., Dowling, A. P. G., Wiedenmann, R. N., Joshi, N. K. & Westerman, E. L. Nocturnal pollinators significantly contribute to apple production. J. Econ. Entomol. 114, 2155–2161 (2021).

    Article  PubMed  Google Scholar 

  227. Rodríguez-Oseguera, A. G., Casas, A., Herrerías-Diego, Y. & Pérez-Negrón, E. Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedonis at landscape-level in central Mexico. Plant Biol. 15, 573–582 (2012).

    Article  PubMed  Google Scholar 

  228. Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Rundlöf, M., Lundin, O. & Bommarco, R. Annual flower strips support pollinators and potentially enhance red clover seed yield. Ecol. Evol. 8, 7974–7985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ryder, J. T. et al. Impact of enhanced Osmia bicornis (Hymenoptera: Megachilidae) populations on pollination and fruit quality in commercial sweet cherry (Prunus avium L.) orchards. J. Apic. Res. 59, 77–87 (2019).

    Article  Google Scholar 

  231. Saeed, S., Naqqash, M. N., Jaleel, W., Saeed, Q. & Ghouri, F. The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (Mangifera indica L.). PeerJ 4, e2076 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Sahley, C. T. Bat and hummingbird pollination of an autotetraploid columnar cactus, Weberbauerocereus weberbaueri (Cactaceae). Am. J. Bot. 83, 1329–1336 (1996).

    Article  Google Scholar 

  233. Sahley, C. T. Vertebrate pollination, fruit production, and pollen dispersal of Stenocereus thurberi (Cactaceae). Southwest. Nat. 46, 261 (2001).

    Article  Google Scholar 

  234. Sakamoto, R. L., Ito, M. & Kawakubo, N. Contribution of pollinators to seed production as revealed by differential pollinator exclusion in Clerodendrum trichotomum (Lamiaceae). PLoS ONE 7, e33803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions? Glob. Change Biol. Bioenergy 6, 756–767 (2014).

    Article  Google Scholar 

  236. Sánchez, M., Belliure, B., Montserrat, M., Gil, J. & Velásquez, Y. Pollination by the hoverfly Eristalinus aeneus (Diptera: Syrphidae) in two hybrid seed crops: celery and fennel (Apiaceae). J. Agric. Sci. 160, 194–206 (2022).

    Article  Google Scholar 

  237. Sanchez-Lafuente, A. M., Rey, P. J., Alcántara, J. M. & Valera, F. Breeding system and the role of floral visitors in seed production of a ‘few-flowered’ perennial herb, Paeonia broteroi Boiss. & Reut. (Paeoniaceae). Écoscience 6, 163–172 (1999).

    Article  Google Scholar 

  238. Schmid, B. et al. Reward quality predicts effects of bird-pollinators on the reproduction of African Protea shrubs. Perspect. Plant Ecol., Evol. Syst. 17, 209–217 (2015).

    Article  Google Scholar 

  239. Sawatthum, A. Efficacy of stingless bee Lepidotrigona terminata as insect pollinator of F1 hybrid cucumber. Int. J. GEOMATE 13, 98–102 (2017).

  240. Schürch, S., Pfunder, M. & Roy, B. A. Effects of ants on the reproductive success of Euphorbia cyparissias and associated pathogenic rust fungi. Oikos 88, 6–12 (2000).

    Article  Google Scholar 

  241. Sheherazade, Ober, H. K. & Tsang, S. M. Contributions of bats to the local economy through durian pollination in Sulawesi, Indonesia. Biotropica 51, 913–922 (2019).

    Article  Google Scholar 

  242. Shigeta, K. & Suetsugu, K. Contribution of thrips to seed production in Habenaria radiata, an orchid morphologically adapted to hawkmoths. J. Plant Res. 133, 499–506 (2020).

    Article  PubMed  Google Scholar 

  243. Smessaert, J., Torfs, J., Honnay, O. & Keulemans, W. Pollination mix: honeybees and bumblebees as possible pollinators for Pyrus communis ‘conference’. Acta Hortic. 1303, 405-414 (2021).

  244. Sousa, R. M., Aguiar, O. S., Freiltas, B. M., Silveira Neto, A. A. & Pereira, T. F. C. Requerimentos de polinização do meloeiro (Cucumis melo l.) no município de acaraú—CE— Brasil. Rev. Caatinga 22, 238–242 (2009).

  245. Sritongchuay, T. et al. Landscape-level effects on pollination networks and fruit-set of crops in tropical small-holder agroecosystems. Agric. Ecosyst. Environ. 339, 108112 (2022).

    Article  Google Scholar 

  246. Srivastava, K., Sharma, D., Pandey, D., Anal, A. & Nath, V. Dynamics of climate and pollinator species influencing litchi (Litchi chinensis) in India. Indian J. Agric. Sci. 87, 266–269 (2017).

  247. Stanley, J., Sah, K., Subbanna, A. R., Preetha, G. & Gupta, J. How efficient is Apis cerana (Hymenoptera: Apidae) in pollinating cabbage, Brassica oleracea var. capitata? Pollination behavior, pollinator effectiveness, pollinator requirement, and impact of pollination. J. Econ. Entomol. 110, 826–834 (2017).

    Article  PubMed  Google Scholar 

  248. Steenhuisen, S.-L. & Johnson, S. D. The influence of pollinators and seed predation on seed production in dwarf grassland Protea ‘sugarbushes’ (Proteaceae). S. Afr. J. Bot. 79, 77–83 (2012).

    Article  Google Scholar 

  249. Steenhuisen, S.-L., Van der Bank, H. & Johnson, S. D. The relative contributions of insect and bird pollinators to outcrossing in an African Protea (Proteaceae). Am. J. Bot. 99, 1104–1111 (2012).

    Article  CAS  PubMed  Google Scholar 

  250. Suetsugu, K. Social wasps, crickets and cockroaches contribute to pollination of the holoparasitic plant Mitrastemon yamamotoi (Mitrastemonaceae) in southern Japan. Plant Biol. 21, 176–182 (2018).

    Article  PubMed  Google Scholar 

  251. Sun, S.-G., Huang, Z.-H., Chen, Z.-B. & Huang, S.-Q. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii). Am. J. Bot. 104, 468–476 (2017).

    Article  CAS  PubMed  Google Scholar 

  252. Symes, C. T., Human, H. & Nicolson, S. W. Appearances can be deceiving: pollination in two sympatric winter-flowering Aloe species. S. Afr. J. Bot. 75, 668–674 (2009).

    Article  Google Scholar 

  253. Tasen, W., Tangmitcharoen, S., Thakeaw, M. & Ogata, K. Insect pollination of Aquilaria crassna (Thymelaeaceae): effect of moths for the fruit setting in Thailand. J. Fac. Agric. Kyushu Univ. 54, 321–328 (2009).

    Google Scholar 

  254. Toivonen, M., Karimaa, A.-E., Herzon, I. & Kuussaari, M. Flies are important pollinators of mass-flowering caraway and respond to landscape and floral factors differently from honeybees. Agric. Ecosyst. Environ. 323, 107698 (2022).

    Article  Google Scholar 

  255. Toukem, N. K. et al. Interactions between integrated pest management, pollinator introduction, and landscape context on avocado Persea americana productivity. Entomol. Gen. 42, 579–587 (2022).

    Article  Google Scholar 

  256. Tremlett, C. J., Moore, M., Chapman, M. A., Zamora-Gutierrez, V. & Peh, K. S.-H. Pollination by bats enhances both quality and yield of a major cash crop in Mexico. J. Appl. Ecol. 57, 450–459 (2019).

    Article  Google Scholar 

  257. Trillo, A., Herrera, J. M. & Vilà, M. Managed bumble bees increase flower visitation but not fruit weight in polytunnel strawberry crops. Basic Appl. Ecol. 30, 32–40 (2018).

    Article  Google Scholar 

  258. Turner, R. C., Midgley, J. J. & Johnson, S. D. Evidence for rodent pollination in Erica hanekomii (Ericaceae). Bot. J. Linn. Soc. 166, 163–170 (2011).

    Article  Google Scholar 

  259. Valdivia, C. E. & Niemeyer, H. M. Do floral syndromes predict specialisation in plant pollination systems? Assessment of diurnal and nocturnal pollination of Escallonia myrtoidea. NZ J. Bot. 44, 135–141 (2006).

    Article  Google Scholar 

  260. Valiente-Banuet, A., Santos Gally, R., Arizmendi, M. C. & Casas, A. Pollination biology of the hemiepiphytic cactus Hylocereus undatus in the Tehuacán Valley, Mexico. J. Arid Environ. 68, 1–8 (2007).

    Article  Google Scholar 

  261. Kroft, T., van der, Roberts, D. G. & Krauss, S. L. The critical role of honeyeaters in the pollination of the cats paw Anigozanthos humilis (Haemodoraceae). Aust. J. Bot. 67, 281 (2019).

    Article  Google Scholar 

  262. Van der Niet, T., Pirie, M. D., Shuttleworth, A., Johnson, S. D. & Midgley, J. J. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii? Ann. Bot. 113, 301–316 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Vanderplanck, M. et al. Does pollination syndrome reflect pollinator efficiency in Silene nutans? Acta Oecol. 105, 103557 (2020).

    Article  Google Scholar 

  264. Vansynghel, J. et al. Quantifying services and disservices provided by insects and vertebrates in Cacao agroforestry landscapes. Proc. R. Soc. B 289, 20221309 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Vaughton, G. Effectiveness of nectarivorous birds and honeybees as pollinators of Banksia spinulosa (Proteaceae). Aust. J. Ecol. 17, 43–50 (1992).

    Article  Google Scholar 

  266. Vaughton, G. Pollination disruption by European honeybees in the Australian bird-pollinated shrub Grevillea barklyana (Proteaceae). Plant Syst. Evol. 200, 89–100 (1996).

    Article  Google Scholar 

  267. Verma, L. R. & Partap, U. Foraging behaviour of Apis cerana on cauliflower and cabbage and its impact on seed production. J. Apic. Res. 33, 231–236 (1994).

    Article  Google Scholar 

  268. Vogel, C., Chunga, T. L., Sun, X., Poveda, K. & Steffan-Dewenter, I. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ 9, e10732 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Walker, M. K., Howlett, B. G., Wallace, A. R., Mccallum, J. A. & Teulon, D. A. J. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination. J. Insect Sci. 11, 98 (2011).

  270. Watts, S., Ovalle, D. H., Herrera, M. M. & Ollerton, J. Pollinator effectiveness of native and non-native flower visitors to an apparently generalist Andean shrub, Duranta mandonii (Verbenaceae). Plant Species Biol. 27, 147–158 (2011).

    Article  Google Scholar 

  271. Wayo, K., Phankaew, C., Stewart, A. B. & Bumrungsri, S. Bees are supplementary pollinators of self-compatible chiropterophilous durian. J. Trop. Ecol. 34, 41–52 (2018).

    Article  Google Scholar 

  272. Wei, S.-G., Wang, R., Smirle, M. J. & Xu, H.-L. Release of Osmia excavata and Osmia jacoti (Hymenoptera: Megachilidae) for apple pollination. Can. Entomol. 134, 369–380 (2002).

    Article  Google Scholar 

  273. Yamamoto, M., da Silva, C. I., Augusto, S. C., Barbosa, A. A. A. & Oliveira, P. E. The role of bee diversity in pollination and fruit set of yellow passion fruit (Passiflora edulis forma flavicarpa, Passifloraceae) crop in Central Brazil. Apidologie 43, 515–526 (2012).

    Article  Google Scholar 

  274. Ye, Z.-M., Jin, X.-F. & Yang, C.-F. Urban forest fragmentation can highly influence pollinator-plant interactions in close contrasting habitats of a local herb, Ajuga decumbens (Labiatae). Urban For. Urban Green. 65, 127378 (2021).

    Article  Google Scholar 

  275. Zisovich, A. H. et al. Adding bumblebees (Bombus terrestris L., Hymenoptera: Apidae) to pear orchards increases seed number per fruit, fruit set, fruit size and yield. J. Hort. Sci. Biotechnol. 87, 353–359 (2012).

    Article  Google Scholar 

  276. Araujo et al. Nocturnal bees exploit but do not pollinate flowers of a common bat-pollinated tree. Arthropod–Plant Interact. 14, 785–797 (2020).

    Article  Google Scholar 

  277. de Mello Junior, L. J., Orth, A. I. & Moretto, G. Ecologia da polinização da amoreira-preta (Rubus sp) (Rosaceae) em timbó—SC, Brasil. Rev. Brasil. Frutic. 33, 1015–1018 (2011).

    Article  Google Scholar 

  278. Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J. 372, n71 (2021).

  279. Haddaway, N. R., Page, M. J., Pritchard, C. C. & McGuinness, L. A. PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst. Rev. 18, e1230 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Mitchell, M. et al. Markummitchell/Engauge-Digitizer: nonrelease. Zenodo https://doi.org/10.5281/zenodo.3941227 (2020).

  281. Kambach, S. et al. Consequences of multiple imputation of missing standard deviations and sample sizes in meta-analysis. Ecol. Evol. 10, 11699–11712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Hedges, L. V. & Olkin, I. Nonparametric estimators of effect size in meta-analysis. Psychol. Bull. 96, 573–580 (1984).

    Article  Google Scholar 

  283. Cumming, G. Understanding The New Statistics (Routledge, 2013).

  284. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 855–875 (2010).

    Article  Google Scholar 

  285. Lüdecke, D. Esc: Effect size computation for meta analysis (version 0.5.1). Zenodo https://doi.org/10.5281/zenodo.1249218 (2019).

  286. Brydges, C. R. Effect size guidelines, sample size calculations, and statistical power in gerontology. Innov. Aging 3, igz036 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Kattge, J. et al. TRY a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  288. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Nakagawa, S., Yang, Y., Macartney, E. L., Spake, R. & Lagisz, M. Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences. Environ. Evid. 12, 8 (2023).

  290. Beaumelle, L. et al. Pesticide effects on soil fauna communities: a meta-analysis. J. Appl. Ecol. 60, 1239–1253 (2023).

    Article  Google Scholar 

  291. Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    Article  Google Scholar 

  292. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2012).

    Article  Google Scholar 

  293. Nakagawa, S. et al. The orchard plot: cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 12, 4–12 (2020).

    Article  PubMed  Google Scholar 

  294. Nakagawa, S. et al. orchaRd 2.0: an R package for visualising meta-analyses with orchard plots. Methods Ecol. Evol. 14, 2003–2010 (2023).

    Article  Google Scholar 

  295. Rosenberg, M. S. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59, 464–468 (2005).

    PubMed  Google Scholar 

  296. Läuter, H. Book review: Cook, R. D., S. Weisberg: Residuals and influence in regression. Chapman and Hall, New York London 1982. VIII, 229 pp., £ 12,-. Biom. J. 27, 80 (1985).

  297. Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–282 (2016).

    Article  PubMed  Google Scholar 

  298. Lanuza, J. B., Allen-Perkins, A. & Bartomeus, I. The non-random assembly of network motifs in plant–pollinator networks. J. Anim. Ecol. 92, 760–773 (2023).

    Article  PubMed  Google Scholar 

  299. Artamendi, M., Martin, P., Bartomeus, I. & Magrach, A. Data and code for "Loss of pollinator diversity consistently reduces reproductive success for wild and cultivated plants" [Data set]. Zenodo https://doi.org/10.5281/zenodo.13319777 (2024).

Download references

Acknowledgements

M.A. acknowledges her PhD funding (PIF20/174) from Euskal Herriko Unibertsitatea (University of the Basque Country). P.A.M. was funded by an Ikerbasque Fellowship. A.M. acknowledges funding from a Ministry of Science and Innovation grant (PID2021-127900NB-I00), the Basque Government through PIBA projects (2024RTE00060004), the European Union (ERC, GorBEEa 101086771), an Ikerbasque Research Professorship and the Spanish Ministry of Science and Innovation and the European Social Fund through the Ramón y Cajal Program (RYC2021-032351-I). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. This research is supported by María de Maeztu Excellence Unit 2023-2027 ref. CEX2021-001201-M, funded by MCIN/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Contributions

M.A., I.B. and A.M. conceived and designed the experiments. M.A. and A.M. performed the experiments and analysed the data. M.A. and P.A.M. contributed materials/analysis tools. M.A., P.A.M., I.B. and A.M. were involved in writing the article.

Corresponding author

Correspondence to Maddi Artamendi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Fabrizia Ratto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–4.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artamendi, M., Martin, P.A., Bartomeus, I. et al. Loss of pollinator diversity consistently reduces reproductive success for wild and cultivated plants. Nat Ecol Evol 9, 296–313 (2025). https://doi.org/10.1038/s41559-024-02595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-024-02595-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing